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Abstract

Bayesian probability theory is applied to the problem of the resolution of closely-spaced objects. The conditions
assumed are: point sources, observed through a known smearing function (i.e., point-spread function). For this
demonstration we use a (Gaussian smearing function so that we can obtain analytic results; however, we present
graphical results for both the Gaussian and the Airy smearing functions. The generalizations to arbitrary smearing
functions may be found in other works by Bretthorst.!»?3 The results obtained for one and two point sources indicate
explicitly the dependence of resolution on signal-to-noise and on the smearing function.

1 INTRODUCTION

In many important problems, we know the functional form of the signal received by the sensor; when this is so
we say that we know the model for the signal. But even if we do not know the functional form of the signal,
Bayesian probability theory is such that an adequate representation of the functional form can be determined from
measurements. Thus the procedures we will be describing can be applied to any real devices that sample data at
discrete intervals. Here we use probability theory to investigate how accurately one can resolve an isolated point
source with Gaussian smearing in a simple one-dimensional telescope and then generalize to two point sources with
Gaussian smearing. Additionally, numerical results are presented for Airy smearing.

2 THE MODEL

One advantage of a Bayesian probability calculation is that it requires one to state precisely what assumptions are
being made in the calculation. Thus one always knows what problem is being solved. We assume the data may be
separated into a systematic part f(z), which we will call the signal, and a random part e;, which we will call noise.
We assume the signal and the noise are additive to make the data D. The data are assumed to be sampled at discrete
positions which we will refer to as pixels. The model of the experiment may then be written as

di = f(zi)+e;  (1<i<N) (D)

where D = {dy,---,dn} is the discrete values of the data, f(z;) is the signal evaluated at the discrete pixel values,
and e; 1s noise. The pixel values z; are not assumed uniformly spaced, nor do we assume these values to be integers.
Indeed, the analysis does not depend upon what these values are; for other models they could equally well be time
values. The signal f(z) is assumed to be a sum over a set of signal functions. We will designate these signal functions
as Gj(x,®) in such a way that the signal may be written as

m

f(x):ZBjGj($’®)’ (2)
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where we define B = {By,---, By} as the collection of amplitudes and & = {#;,---,6,} is a set of nonlinear
parameters. Both B and ® are to be determined from the data. However, in this problem we are interested in the
location of the point sources, and not nearly so interested in their magnitude. For this demonstration we will take
the signal functions to be either an Airy or Gaussian functions. The optical smearing function can, in many cases,
be closely approximated by a Gaussian.? We will assume, for now, that the signal functions G; are of the form

Gj(r,0;) = (2/m)F exp {~(x — 0;)°}, 3)
where we are using dimensionless units, 1.e., we have absorbed the spread of the Gaussian into the pixel value x and
6; (in these units the pixels are not integers). The reason for the unusual normalization will become apparent as
we proceed. The ® parameters are the locations of the point sources. In this calculation we will assume there 1is
only a single point source, and later we will present analytic results for the two-point source problem. We restrict
the calculation to one dimension, primarily because there is no convenient way to exhibit the results for higher
dimensional calculations. Indeed the generalization to any number of dimensions is straightforward.

We will solve this problem using Bayesian probability theory, assigning uninformative priors; thus, from a prob-
ability standpoint we will make very conservative estimates of the parameters and their accuracy. We will compute
the posterior probability of the position of the point sources independent of the amplitudes. We do this to see what
probability theory can tell us about the position of the point source without the nuisance amplitude confusing what
probability theory is telling us.

3 THE POSTERIOR PROBABILITY OF THE PARAMETERS

Bayes’ theorem tells us that, given the data D and prior information I, the joint probability density of all for the
parameters is
P(B,®|P(DB,O,]) 4
PO W
Here, P(B,®|D,I) is the joint posterior probability density of the amplitudes B and the positions of the point
sources @ given the data D and the prior information 7. It is this probability that we would like to compute.
P(B, ®|I) is the joint probability of the amplitude and the nonlinear parameters given only our prior information I.
This term 1s called a prior probability and represents what was known about these parameters before we took the
data. P(D|B,®,I) is the probability of the data D given the amplitude, the positions of the point sources and the
prior information I. This term is often called a likelihood or sampling distribution. And P(D|I) is the probability
of the data D given only our prior information /. This term is a normalization constant and will be ignored in this
calculation.

To proceed, we must supply both P(B,®|I) and P(D|B,®, ). For this problem we will assume we have little
prior information; the prior probability will be effectively a constant over the range of values where the likelihood
is sharply peaked. Consequently, the prior we use will make almost no difference. For this calculation we will take
P(B, ®|I) to be a uniform prior - for a more extensive discussion of uninformative priors see Zellner® and Bretthorst.
Thus to proceed we must compute the likelihood P(D|B, ®,T). We can compute the likelihood of the data if we can
assign a prior probability to the noise. We can assign a noise prior using maximum entropy once we identify what
prior information we have. For this calculation we will assign a noise prior that 1s least informative for a given second
moment of the noise, or noise power. Thus any other maximum entropy prior based on more information will always
make more precise estimates than those that follow. The maximum entropy calculation is straightforward and gives

P(B,®|D, 1) =

2
e
P(61,~~~,6N|0,I):Hf\;l(Qﬂ'Uz)_%eXp{—le}, (5)
o
as the prior probability of the noise, where o2 is the given variance of the noise. For now we will assume o2 to be
known; at the end of the calculation, if ¢ is unknown, we can eliminate it from consideration or even estimate it.
For a discussion of this important point, see Jaynes® and Bretthorst.»#3 From the noise prior probability, Eq. (5),
we can compute the joint posterior probability of all of the parameters:

N

P(B,@|O’,D,I)O(O'_N6Xp{—zw}. (6)
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Substituting Eqgs. (2) Eq. (3) into Eq. (6) and taking the simplest case of one Gaussian, we have

N

P(B,, 01|, D, 1) o o= exp {_ Z [di — B1(2/7)7 exp{—(x; — 91)2}]2} | -

4 202
1=1

But this is the joint posterior probability of both the amplitude B; and the center position #; given the variance of
the noise o2, the data D, and the prior information I. We would like to compute P(6;|o, D, ) to better understand
how to estimate the important position of the point source. The rules of probability theory uniquely determine how
this is to be done. One computes

H%MJLU:/E&PBL&MDJ) (8)

This equation essentially says the probability of a series of mutually exclusive propositions is the sum of the prob-
abilities of the individual propositions; when probability densities are used the sums are replaced by integrals and
one obtains Eq. (8). Using Eq. (7) and performing the indicated integral, one obtains

Nd® — 12
P(91|0,D,I)aU_NeXp{—T}, (9)
o
where N
— 1
dz = — d? 10
1s the mean-square observed data value, and
N 2
2=4/2/7 lZdieXp{—(l‘Z—Hl)z}] (11)
i=1

where we have made the approximation that

X

V27 Zexp {—2(z; — 61)%} \/Q/—T/O:odl‘ exp {—2(x — 61)*} (12)

~ 1

which is valid when the smearing function is wide compared to a pixel. The approximation made in the above
calculation is, essentially, harmless and is removed in the general formulation of the problem.! The Gaussian model
functions, Eq. (3), are normalized in the sense that their mean-square length is one.

If the variance of the noise o2 is known, then we may simplify Eq. (9) to obtain

B2

h
P(Gﬂa,D,I)oceXp{W} . (13)

This 1s the posterior probability of the possible positions of the point source and will tell us everything the data
have to say about it, but it assumes we know o. In most real problems this is not the actual case. However, this
presents little difficulty because we can always multiply Eq. (9) by a prior probability for the variance and integrate
with respect to o. This will give us the posterior probability of the center position independent of the amplitude
and noise variance. The variance of the noise is a scale parameter, and Jeffreys” has shown that the appropriate
uninformative prior probability for a scale parameter is the Jeffreys prior 1/o. Multiplying Eq. (9) by a Jeffreys prior
and integrating with respect to o, one obtains

ﬁ )
P(6,|D, I) x [1-— 5}351 . (14)



This is the posterior probability density for #1, the position of the point source, and will tell us everything the data
have to say about it independent of the amplitude B; and independent of the noise variance ¢2. This probability
density is referred to as a “student t-distribution” in the literature, and it is the generalization of this distribution
to arbitrary models that we apply in Section 4.

To gain a better analytic understanding of these equations, suppose we have data with very high signal-to-noise
ratio of the form

di = (2/7)T Bexp {—(2; — 2)°} + ¢, (15)

where # 1s the estimated location of the point source and B is the estimated amplitude. Then, if we make the
approximation that sums may be replaced by integrals in Eq. (11), the sufficient statistic h? is given approximately
by

h? ~~ B? exp {—(z —01)}. (16)

If we assume the variance of the noise o2 to be known, we can Taylor expand the sufficient statistic k2 about # and
make the (mean + standard deviation) estimates of the center position. Performing the indicated calculation the
posterior probability of the center position is given approximately by

| B2 B2(& — 0;)°
P(91|U,D,I)% mexp{—%} (17)

from which we estimate the position to be
) o
(gl)est—Bayes =z+ V2B (18)

where, due to the approximation in Eq. (16), the estimated value & is the “true” location of the point source. We
remind the reader that we are using dimensionless units. To convert to real physical pixels, let « represent the
standard deviation of the Gaussian smearing function; then the location of the point source is estimated to be

. o

(gl)est—Bayes =z+ B’ (19)

where 61 and & are now the dimensional quantities of interest. This indicates, as one’s intuition might have suggested,
that the accuracy of the center position depends inversely on the signal-to-noise ratio of the data and linearly on
how broadly the instrument smears the data. To be more specific, suppose ¢ = 1, B = 100, and « = /2, i.e., the
smearing 1s such that we have significant data over only approximately 5 pixels; then we estimate the center position

of the Gaussian to be Y
R 2
(gl)est—Bayes =z+ 100 (20)
~zx 0.014 pixels.

If we had used the standard deviation of the Gaussian smearing function as an indication of how accurately we
determine the location of the point source, we would have had

(gl)est—Gaussian =2 4 1.4 pixels. (21)

Thus the use of probability theory has improved the resolution by a factor of 100. That is, had the point source been
displaced from & by more than «/100, it is very unlikely that we would have obtained data pointing to the “true”
position.

This same calculation may be repeated for the case of two point sources. The calculation proceeds by postulating
a two-point-source model function, Eq. (2), with m = 2. The posterior probability of the location of the two point
sources 1s then computed in an analogous way to the one point source problem. From this we find the posterior
probability of two point sources located at #; and #; with Gaussian smearing to be

h2
P(61,02]c, D, I) < exp { } , (22)

o2



where h? is now given by

L 2 2
o hd (23)
2
with
N N
=S ), =3 e, =
i=1 i=1
and

(2/7")% 2 2
Hi(x) ~ [exp {—=(61 —2)*} +exp {—(02 — 2)*}] (25)
¢2(1—|—exp {—@Z})

Ha(x) ~ G/n)* fexp {=(0: — )2} —exp {—(02 — 2)?}] (26)
¢ 1—exp{ (91_92)}

The quantity (6; — 02)? in the square root in the above equations tells us how the estimation of two point sources
interfere with each other. As long as (61 — 02)? is large, the exponential term will be small and the center position of

each Gaussian can be estimated as if the other were not present. It is only when the estimated separation distance
is less than or approximately equal to 2 that any significant interference can occur.

We can derive the accuracy estimates for two point sources with Gaussian smearing in a way analogous to what
was done for the one point source. We postulate a functional form of the data with high signal-to-noise ratio; here,
we take

d; = (2/m)7 [5’1 exp { (&1 —:)*} + By exp { (2 — l‘z’)z}] te (27)

as the data, where z; is the estimated position of the first point source, 5 is the estimated position of the second
point source, and By and B, are the estimated amplitudes of the sources. Then we substitute the data, Eq. (27),
into the posterior probability, Eq. (22), and Taylor expand about the maximum posterior probability to obtain the
(mean =+ standard deviation) estimates. The calculation is long and tedious and we do not repeat the details here.
When the two point sources are well separated, the estimates reduce to the one point source estimates. When the
two point sources are so close that they overlap almost completely, the accuracy estimates reduce to

16[(7B1 4 3B2)A + By + Bylo2a? .
(gl)est—Bayes =21+ [(7 5y :1_ %) + B + Byo*a pixels (28)
(B1 + B2)3(17A + 3)
for 6; and
16[(3B; + 7B2)A 4 By 4 Bslo?a? |
(92)est—Bayes = I3 (65 :1_ %) + B + Byo*a pixels (29)
(B1 + B2)3(17A + 3)
for 5, where A the estimated separation, is defined as
A= |i‘1—i‘2| (30)

and By is the estimated amplitude If A is very small, these estimates will confound the two point sources; i.e., they
will be indistinguishable from one point source, and the estimates will be determined to an accuracy which depends
on the sum of the amplitudes of the two point sources, as intuition might have suggested. However, these estimates
will be a little worse than those obtained from the one-point-source model. Again this is what one would have
expected. After all, in the limit A — 0 we have estimated the position of a single point source with a probability
density for two: probability theory is hedging its bets, by making the estimates less certain.

We take an example similar to the previous one and set o = 1, By = B, = 100, @ = v/2, and position the two
point sources 0.2 pixels apart (A = .1 in dimensionless units); then according to probability theory the positions of



these two point sources are estimated to be

o) _ oy [16[700+300).1+ 100 + 1002
test-Bayes — ™1 (100 + 1003(1.7+3) "
~ i+ 0.016 pixels (31)

wZ)est—Bayes ~ s+ 0.016 pixels.

This is only slightly worse than the one point source estimate of £0.014 pixels. Thus when two point sources are
as close as one fifth of a pixel, they are almost noninterfering and are still resolvable at better than 6 standard
deviations!

4 EXAMPLES

In these examples we will generate data containing one or more point sources and then apply the full Bayesian
solution to these computer-generated data. We will specify carefully how the data were generated so that these
demonstrations may be repeated easily. In the first example, Fig. 1, we have generated data from

di = 100 exp {—(25.0 — 2:)*} + ¢, (32)

where ; = {0.5,1.0,---50.0}, corresponding to N = 100 data values. The noise term e; was generated from the
absolute value of a unit normal random number generator. The signal-to-noise ratio (defined as the peak square
signal value divided by the mean-square noise) is 100. This is the example used in deriving the accuracy estimates for
the one point source with Gaussian smearing, Eq. (20). Notice that on this scale the digitization of the Gaussian is
apparent. We analyzed the data using a one-point-source model with Gaussian smearing and computed the posterior
probability of the position of the point source independent of the amplitude and variance of the noise,! the so-called
“student t-distribution.” We have plotted the base 10 logarithm of the “student t-distribution” as the solid line in
Fig. 2. The dotted line is the data, after subtracting a constant so that the peak data value just touches the maximum
log “student t-distribution.” The spike around 25 is, up to a normalization constant, the posterior probability of the
position of a single point source with Gaussian smearing. The posterior probability has determined the location of
the point source very accurately, within approximately £0.01 pixels. This is in good agreement with the theoretical
calculations.

For this second demonstration we use data which contain two point sources with Gaussian smearing. The smearing
is the same as that used in the last example. We generated data from the following equation:

d; = 100 exp {—(25.0 — z;)*} + 100 exp {—(25.5 — z;)*} + €;. (33)

The noise values were generated in the same manner as for the one point source with Gaussian smearing. Here we
have two point sources separated by one pixel. The data, Fig. 3, look like one Gaussian. The total signal-to-noise
ratio of these data is just double that of the one point source. To perform this analysis we considered a two-point-
source model with Gaussian smearing and computed the “student t-distribution.” There are now two parameters of
interest to be determined from the data. We computed the base 10 logarithm of the “student t-distribution” and have
displayed it as a contour plot, Fig. 4. Notice that there are two well-defined maxima in this contour plot. Had we
plotted the “student t-distribution,” instead of the logarithm of the “student t-distribution,” the two maxima would
look like two very sharp spikes located at 25 and 25.5. The stretched out appearance of these contours indicates that
the “student t-distribution” has determined the difference in position of the two point sources better than the sum.

In the next two examples we again use computer-generated data. However, we now consider the case of a one-
dimensional Airy distribution as the smearing function. In one dimension, the Airy distribution reduces to the
so-called sinc function. We take our signal to be of the form

iB] [Smg 0__;)] : (34)

j=1



This problem has been considered in some detail by Jaynes,® and we refer the reader to this analysis for analytic
details. Here we will simply use this model and compute the posterior probability of one or more point sources using
the general theory given by Bretthorst.m?3 For this third example we will again use dimensionless units and run the
pixel values from one to 50 by half integers, so that there are N = 100 data values. We generated the data, Fig. 5,

from
2

n(25. 1—
sin(25.000 z;) Ve, (35)

25.0001 — =;

where there is one point source located at 25.0001 (we displaced the location off the exact pixel value to avoid
numerical problems with the sinc functions). Although the point source is located in nearly the same place and has
the same amplitude as the single point source with Gaussian smearing, the signal-to-noise in these data is 100. Next
we computed the posterior probability of the location of a single point source with sinc-function smearing, obtaining
the “student t-distribution” — see Bretthorst.! We plot the base 10 logarithm of the “student t-distribution,” Fig. 6.
We have displayed the data (dotted line) as a reference. The sharp spike around 25 is the “student t-distribution”
normalized to the maximum of the log “student t-distribution.” Like with the Gaussian smearing, the position of a
single point source with Airy smearing has been determined to £0.01 pixels.

In the last example, we will consider the case where the data contain two point sources with Airy smearing. We
generated the data, Fig. 7, from

d; =100

2

d; = 100 +ei. (36)

sin(25.0001 — 2;)]° + 100 [£0(25.5001 — w)
25.0001 — 25.5001 — x;

The noise was again generated in the same manner as the Gaussian case. Also, these two point sources are separated
by one real pixel. The signal-to-noise is again approximately double that of the one point source with sinc-function
smearing, or approximately 200. We computed the posterior probability of the center position of two one point
sources with sinc-function smearing independent of the amplitudes and variance of the noise, obtaining a “student
t-distribution”. The two parameters of interest are the positions of the two point sources. We again plot the base 10
logarithm of the posterior probability of the position of the point sources independent of the amplitudes and variance
of the noise, the “student t-distribution,” Fig. 8. Notice the contour lines are dropping by 10 orders of magnitude in
probability density, indicating we have determined the positions of the point sources accurately. The elongated form
of these contour lines is indicative of the difference in the center positions being better determined than the sum of
the positions.

5 SUMMARY — CONCLUSIONS

In this paper we have demonstrated how the use of Bayesian probability theory can be used to improve the resolution
of multiple closely-spaced objects. This analysis indicates that using probability theory, multiple closely-spaced point
sources are easily resolvable at separations of less than one pixel, provided one has reasonable signal-to-noise, order
10, and enough data in the region of the peak to get a good determination of the shape. But Bayesian probability
theory is much more than a parameter estimation procedure. Indeed when little prior information is incorporated into
a Bayesian calculation, the estimates one obtains cannot differ significantly from the maximum likelihood estimates,
and if one examines the results presented here one will find that we have indeed obtained the maximum likelihood
results. The real power of Bayesian probability theory comes from its ability to carry the problem forward and
to answer questions like “How precise are our estimates?” or “Has a signal been detected?” or “How many point
sources are present?”
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Figure 1: Computer Simulated Data — One Point Source With Gaussian Smearing
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These computer-simulated data contain one point source with Gaussian smearing; the point source is at 25. The signal-to-noise

ratio of the data is approximately 18. There are N = 100 data values, and there are approximately 5 data values in the vicinity

of the peak, with two more located near the bottom of the Gaussian. The amplitude of the Gaussian is 100 and the variance

of the noise is 1. Pixel values, in this example, correspond to half integers.

Figure 2: Logig Posterior Probability of One Point Source — Versus the Data
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The dotted line is a close-up of the data (scaled to the maximum Log posterior). There are only five data values in this region.
The sharply peaked solid line inside the data is the base 10 logarithm of the posterior probability of the point source with

Gaussian smearing. Notice how sharply peaked this is compared to the data. The line in the center that looks like we have

marked the position of the point source is really the posterior probability of the point source scaled to the maximum Log

posterior. The width of this line is indicative of how accurately probability theory has determined the center position.



Figure 3: Computer Simulated Data — Two Point Sources With Gaussian Smearing
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These computer simulated data contain two point sources, one at 25 and the other at 25.5. The pixel values correspond to
the half integers; thus these two point sources are separated by one pixel. There are N = 100 data values, and there are

approximately 6 data values in the vicinity of the peak.
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Figure 4: Logig Posterior Probability of Two Point Sources With Gaussian Smearing
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This contour plot is the base 10 logarithm of the posterior probability of two Gaussians in the data. Notice that the contours
clearly resolve the two Gaussians even though there are very few actual data values. Around the region of the maximum, a
drop of one corresponds to a region containing 90% of the posterior probability, a drop of 2 corresponds to a region containing

99%, etc. Thus the region around the maximum corresponds to a very sharp peak, indicating good resolution of these two

center positions.



Figure 5: Computer Simulated Data — One Point Source With Sinc-Function Smearing
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These computer simulated data contain one point source at 25.0001 (we displaced it by 1/10000 to avoid possible numerical

difficulties with the sinc functions). The signal-to-noise ratio of the data is 100. There are N = 100 data values, with the

pixel values corresponding to the half integers. The amplitude of the point source is 100 and the variance of the noise is 1.

Figure 6: Logig Posterior Probability of One Point Source — Versus the Data
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The dotted line is a close-up of the data. There are 5 data values in this region. The solid line inside the data is the base

10 logarithm of the posterior probability of the center position of one point source with sinc-function smearing. Notice how

sharply peaked this is compared with the data. The line in the center that looks like we have marked the position of the point

source is the posterior probability of the center position (normalized to the maximum of the log posterior). The width of this

line 1s indicative of how accurately the point source has been located.
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Figure 7: Computer Simulated Data — Two Point Sources With Sinc-Function Smearing
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These computer simulated data contains two point sources, one at 25.0001 and the other 25.5001 (we again displaced them
by 1/10000 to avoid possible numerical difficulties with the sinc functions). The pixel values are again the half integers

(0.5,1.0, -

-+,50.0); thus, the two point sources are separated by one pixel. There are N = 100 data values, and there are

approximately 6 data values in the vicinity of the peak.

Figure 8: Logig Posterior Probability of Two Point Sources With Sinc-Function Smearing
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This contour plot is the base 10 logarithm of the posterior probability of two point sources with sinc-function smearing in
the data. Notice that the contours clearly resolve the two point sources even though there are very few actual data values.
Around the region of the maximum, a drop of one corresponds to the region containing 90% of the posterior probability, a
drop of 2 corresponds to a region containing 99%, etc. Thus the region around the maximum corresponds to a very sharp

peak, indicating good resolution of the point sources.
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