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Although the discrete Fourier transform remains the dominant means of process-
ing NMR. data (/-4), other methods of analyzing time-domain signals exist (3},
and there has been recent interest among magnetic resonance scientisis in applying
alternative analysis techniques in an effort to improve signal-to-noise and resolution
ofthe resulting frequency-domain spectrum. Recently, Bretthorst (6} and Jaynes (7)
introduced a novel approach to the general time-domain signal analysis problem uti-
lizing the technigques of Bayesian probability theory. Their approach is particularly
suited to the class of time-domain signals characteristic of pulsed magnetic resonance
spectroscopy, namely, a sum of decaying sinusoids. An especially attractive feature
of Bayesian spectrum analysis lies in its ability to integrate out of the parameter-
optimization-search procedure many of the parameters that define the model (so-
called “nuisance™ parameters). This greatly reduces the complexity of the optimiza-
tion-search process, These nuisance parameters, such as sinusoid amplitude and
phase, are then readily estimated, if needed, once the primary model parameters{e.g.,
frequencies and decay rates) are found via standard optimization-search algorithms.
In this communication we demonstrate the application of Bayesian spectrum analysis
to a time-domain { Bloch decay) "*C NMR signal from a standard ASTM reference
sample of 1,4-dioxane in benzene-d;,.

Generally, a substantial amount of prior information is available regarding the
“true” signal resulting from an NMR experiment. Making use of this information
ought to improve our results. However, simply taking the Fourier transform of the
data affords no way to take it into account. This information can be incorporated
advantageously into the time-domain analysis, yielding a more powerful parameter
determination. In the Bayesian spectrum-analysis and parameter-estimation tech-
nique, one analyzes the data in terms of some model which expresses the prior infor-
mation. The data are fitted to the model using probability theory to obtain the “best”
estimated parameters. The residuals are then reviewed to see if there is any coherent
characteristic that has not been accounted for in the model. If there is, the model 13
updated and the entire process repeated until all coherent characteristics are removed
from the residuals, that is, until the data accurately map onto the model.

The Bayesian analysis gives a simple and elegant interpretation to the model-fitting
problem and places the discrete Fourler transform in a new light, When fitting data
to a model, the data may be thought of as a vector in an N-dimensional vector space
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and the “best” (in the sense of most probable) values of the model parameters (e.g.,
the frequencies and decay rates) are those for which the projection of the data vector
onto the model vector is 2 maximum,.

The analysis shows that taking the Fourier transform of the data is equivalent to
postulating a simple single-harmonic-frequency model and then looking for the sin-
gle frequency which bests fits the data. Obviously, when the signal has more structure
than a single stationary frequency, the single-frequency modet cannot be fitted to the
data well. Models which take on more of the characteristics of the real signal will do
better (in the sense of more precise estimates) in determining the frequencies and
decay rates. This was to be expected, but the amount of improvement thus obtained
was at first surprising.

The Bayesian spectrum analysis begins by postulating a model for the time-series
data. The obvious model for solution-state NMR is a sum of exponentially decaying
sinusoids; thus, the model used is

A= C+ 3 (Bicos wyt + Byy,sin wit)e @, f1]
Jj=1

where B; and B, are effectively the amplitude and phase of the jth sinusoid, « ;18
the frequency, «;is the decay rate, and ris the total number of sinusoids or resonance
frequencies. A powerful consequence of the Bayesian analysis is the elimination of
the amplitudes { B} and reformulation of the problem in terms of the frequencies w ;
and decay rates a; only. In the case under study herein, all parameters but the four
frequencies w; and four decay rates «, were eliminated from the final analysis. The
analogous least-squares analysis would have had eight additional amplitudes and a
noise variance to determine.

Although the full details of the analysis theory are beyond the scope of this commu-
nication (but may be found elsewhere) (6-8) a brief overview is given. In the lan-
guage of probability theory, we seek those model parameters { w, a } which have the
highest “posterior probability” given the data, D, and the prior information, /. This
probability, P({w, &} | D, I), is given by

[2]

~5 {m=N)/2
P({w,a}lD,I)oc[I*mjz} ,
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where # = 2r + 1 is the total number of amplitudes (including C) appearing in Eq.
[1], d*is the mean square of all N digitized data values d;,
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and h? is a “sufficient statistic” for making inferences about the frequencies and decay
rates. The sufficient statistic is the mean-square projection of the data onto a set of
orthonormal model functions and is given by
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where /; is the projection of the data onto one of the orthogonal model functions
and is defined as

N
b= d:H{1). [4]

The orthonormal model functions /7; are defined as
m
H{1) =" 3 e, Gu(1). [3]
k=1
The orthonormal model is given in terms of new amplitudes {4} (linear combina-
tionsof { B} in Eq. [1]),
[i
S = 2 AH{w al, ). (6]
j=1
The orthonormat model functions are constructed from the nonorthogonal model
functions, Eq. [1], through the eigenvalues \; and eigenvectors e, of the real, sym-
metric, square matrix

N
g = 2, Gi1}Gr(l) (I <j=m), {7]

2]

where { G} is essentially the set of 2r + | functions multiplying the amplitudes { B}
and the constant Cin Eq. [1]. The method is called “Bayesian™ because Eqs. [2]-
[ 7] result from application of Bayes’ theorem of probability theory (9).

Figure [ illustrates the final iime-domain result of applying Bayesian spectrum
analysis o the '’C- { 'H } free induction decay (FID, 75.43 MHz} of an ASTM sam-
ple of 40% 1,4-dioxane and 60% benzene-dy. [IUPAC NMR spectral reporting con-
vention is followed throughout (/3).] In Fig. 1A is shown an expanded partial por-
tion of the experimentally obtained FID data. The posterior probability (Eq. [2]) for
the model function (Eq. [1]) is then successively optimized {maximized) in terms of
its parameter set (w;and «;) for a successively greater number of resonance sinusoids
(i.e., r=1,2,3-..)until a model is found that leaves no coherent characteristics in
the residuals, or until any such coherenti characteristics are reduced to a sufficiently
small level. For the FID shown in Fig. 1A, only four sinusoid components (r = 4)
were required to fit the data well. Figure 1B shows the resulting optimized model; the
residuals are shown in Fig. 1C (note the change in scale),

Frequency-domain results of both discrete Fourier transformation and Bayesian
spectrum anaiysis are compared in Fig. 2. In Fig. 2A the result of FT analysis of the
initial 4096 complex time-domain data points is shown. A triplet arising from ben-
zene-d; is found centered at 128.0 ppm and a singlet arising from 1,4-dioxane, at
67.2 ppm. If the same 4K complex time-domain data points are analyzed via Bayes-
ian spectrum analysis and the optimized four-frequency decaying sinusoid model
{ vide supra) is Fourier transformed over the same time interval, the identical absorp-
tion spectrum results (Fig. 2B ).

Of course, since the Bayesian spectrum analysis yields resonance frequencies w;,
amplitudes { B}, and decay rate constants a; directly, there is no reason to convolute
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FiG. L. (A) Expanded partial section (256 data points) of one channe of the BC-d "M} free induction
decay from a 40% 1,4-dioxane/60% benzene-d, sample. (B) The four- -frequency, four decay-rate model
(Eq. [1], r = 4) resulting from Bayesian spectrum analysis expanded over the same time interval. {C) The
residuals resulting from the difference between the real signal (A ) and the optimized model (B).

these parameters through Fourier transformation, especially in cases of poor signal-
to-noise and overlapping resonance lines, Furthermore, in many instances the reso-
nance linewidth or time-domain decay-rate constant is of little fundamental interest
as it typically is reflective of statlc magnctlc field inhomogeneities. The line amplitude
in the Bayesian analysis, (B + B,Jr Y2, is equivalent to the integrated mtensuy in
the Fourier presentation and its accurate measurement, along with that of w;, is of
primary import in quantifying NMR spectra. These line amplitudes are plotted in
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FIG. 2. (A) Expanded portions of the Fourier transformation {4096 complex points) of the free induction
decay shown in Fig. 1A, A triplet, Jon = 24 Hz, centered at 128.0 ppm, is found for benzene-d, and a
singtet at 67.2 ppm for 1,4-dioxane. {B) An equivalent presentation of the Fourier transformation {over
the same time interval} of the optimized four-frequency, four-decay-rate model shown in Fig. 1B resulting
from Bayesian spectrum analysis. (C) The line spectrum of the Bayesian model. The model’s parameters

. . 2 2 12 . : . )
are plotted such that the ling amplitudes, (B} + B7,,}'/%, which are equivalent to the integrated resonance
areas in the absorption spectrum, are given as line height. Lines are positioned at each estimated w; with
uncertainty approximately £0.01 Hz (2 SD). Lineshapes (not resolved on this scale) are Gaussian with
breadth indicative of the precision of the frequency estimates.

Fig. 2C for each resonance where the width of each line represents the uncertainty in
frequency estimation, =0.01 Hz (2 SD). Although determined more precisely than
their Fourier counterparts, the resonance frequencies derived from Bayesian spec-
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trum analysis of 4K complex time-domain points agree exactly with those from Fou-
rier analysis on a Varian spectrometer within the limits imposed by the fast Fourier
transformation of 16K poinis (after zero-filling to 48K, 0.8 Hz per point) and *Lo-
rentzian” linewidths of about 1-4 Hz,

The above demonstration shows the consistency of the Fourier and Bayesian analy-
ses when resonance frequencies are well separated relative to their decay-rate con-
stants and signal-to-noise is substantial. However, the strength of probability analysis
lies in its ability to provide reliable model parameter estimates under conditions of
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[1G. 3. Presentation equivalent to that of Fig. 1. White {Gaussian ) noise has been added to the identical
free induction decay described earlier to greatly reduce signal-to-noise,
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limited signal “quality” {e.g., poor signal-to-noise, resonance frequency separations
comparable to decay-rate constants, and data acquisition periods less than about
2-3T%), To demonsiraie this, the same time-domain signal employed in Figs. 1 and
2 was mixed with white {Gaussian} noise to provide a simulated data set with the
same spectral characteristics, but with greatly diminished signal-to-noise. Figure 3
shows a portion of this low signal-to-noise time-domain data. As before, both Fourier
and Bayesian spectrum analyses were applied to this “new” time-domain data set.
The resulis are shown in Figs. 3 and 4.
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FIG. 4. Presentation equivalent to that of Fig. 2. The Fourier analysis of the “new” low signal-to-noise
data is significantly compromised ( A ) while Bayesian analysis ( B, C) vields resulis similar to those obtained
with the previous high signal-to-noise data.
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Analysis by discrete Fourier transform, Fig. 4A, yields evidence for the more in-
tense singlet resonance of 1,4-dioxane while the triplet resonance due to benzene- ds
is almost lost in the noise. Bayesian spectrum analysis, however, again finds four
dominant frequencies and Fourier transformation of the resulting model (Fig. 3B)
yields the absorption spectrum shown in Fig. 4B. This spectrum appears equivalent
to those seen in Fig. 2A or 2B. Actually, because of the decreased signal-to-noise, the
parameter estimates are less precise by a factor directly related to the change in signal-
to-noise, but negligibly so compared to the washout of the Fourier anatysis. The line
amplitudes are plotted in Fig, 4C and are similar to those found with greater signal-
to-noise (Fig. 2C),

As with other time-domain analysis alternatives to the Fourier transformation, the
price for improved spectral quantification is computation time and assumption of an
accurate (reasonable) model. The Bayesian analysis presented herein used software
with which no real effort at efficiency optimization has yet been made; computation
times were on the order of one CPU hour on a DEC VAX | 1 /780. We speculate
that by incorporating more efficient search routines and operating-systermn-specific
software commands, the computation time could be reduced to a few minutes. Com-
putation time is expected to grow approximately as the square of the number of reso-
nance sinusoids in the model function. Given the substantial improvement in spec-
tral analysis and the ever increasing power of research computers, this does not ap-
pear to be an impediment to widespread use.
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