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BAYESIAN INTERPOLATION AND DECONVOLUTION

G. LARRY BRETTHORST

Washington University

Department of Chemistry

Campus Box 1134

One Brookings Drive

St. Louis, Missouri 63130-4899

ABSTRACT. The deconvolution problem is addressed in stages beginning with the interpolation
problem when little prior information is available and proceeding to the full deconvolution problem
when a great deal of prior information is available. The results of the calculations indicate that good
solutions to the deconvolution problem are available even when limited prior information is available
and that these results overlap those obtained when a great deal of prior information is available.
The di�erence between them is that the use of uninformative priors causes large uncertainties in
the estimated signal, while highly informative priors decreases the uncertainties in the estimated
signal.

Introduction

The deconvolution problem is important in many branches of science and engineering. In this
problem the \image" or signal is convolved with a smearing function. This function is also called
an impulse response function because the ideal noiseless signal that one would obtain in response
to an input impulse or delta function is the smearing function for detector. In linear systems
the output from an arbitrary input may be written as a convolution or average of the true signal
convolved with the impulse response function. Averaging loses information. In addition the signal
is contaminated with noise, consequently there is no unique way to deconvolve the signal from the
impulse response function; rather one must make inferences about the true signal. In this paper,
the deconvolution problem is studied beginning with the simplest \baby" version of this problem
and proceeding through stages to more and more complex versions of the problem until, �nally, the
full deconvolution problem is analyzed. At the end of each stage, numerical examples are supplied
to illustrate the calculations.

In the deconvolution problem addressed here, there is a data set D which is postulated to
contain a signal y(t) plus additive noise:

d(ti) = y(ti) + ni (1)

where ni represents the noise. The data D are a collection of N discrete data samples, D �
fd(t1); : : : ; d(tN)g. The signal y(t) is obtained from a \convolution" integral of the form

y(t) =
Z tN

t1

d�r(t� �)u(�) (2)

where r(t) is the impulse response function, and u(t) is the unknown signal. The data D have been
written as one dimensional, although the mathematics will take no notice of this and the results
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may be generalized to higher dimensions by simply relabeling the higher dimensional quantities.
The signal that appears in the detector, y(t), will be thought of as a time series, although again
the mathematics takes no notice of this, and one could, for example, interpret t as position, as one
would in an image. The problem is to make the best inference possible for the unknown signal,
u(t), from the data and the prior information.

When the impulse response function r(�) is a Dirac delta function

r(t� �) = �(t� �); (3)

the convolution integral may be evaluated and one obtains

d(ti) = u(ti) + ni: (4)

The deconvolution problem has reduced to the \data interpolation" problem. Clearly if one is to

understand the deconvolution problem, then one must have a �rm understanding of the interpolation

problem. For this reason the data interpolation problem will be studied in the �rst two sections of
this paper.

In the �rst section, the interpolation problem is addressed, and probability theory will be used
to derive the posterior probability for the value of an arbitrary pixel given the data and the prior
information. In this baby version of the problem the prior information will be that the signal should
be smooth.

In the second section, the analysis of the interpolation problem continues with the use of more
informative prior information. This more informative prior information will include information
about the functional form of the signal, as well as information about the �rst and second derivatives.
At the end of each sections several numerical examples are given.

In the third section, the full deconvolution problem is addressed using the techniques and
procedures developed in the �rst two sections. Again numerical examples are included at the end
of this section. Then in the fourth section the deconvolution is generalized to include more general
types of prior information. Additionally, more e�cient means of estimating the signal and the
uncertainty in the estimate are developed.

1 Data Interpolation { Second Derivative Prior Information

In the data interpolation problem, there is a signal U . This signal is to be estimated at a num-
ber of discrete points. These discrete points will be called pixels. These pixels will be labeled
fu0; : : : ; u�+1g where

� � �(N � 1) + 1; (5)

is the number of the pixel corresponding to the last data value, and pixel u1 corresponds to the �rst
data value. The pixels labeled u1; : : : ; u� will be called interior pixels; while u0, and u�+1 will be
called boundary pixels. These boundary pixels are special because they must be handled di�erently.
The pixel density factor, �, indicates the density of the pixels relative to the data. If � = 1 there is
a one to one correspondence between the pixels and the data (excluding the two boundary pixels).
If � = 2, there are two pixels for every data value, etc. The discrete times ti correspond to the
pixels, not the data. So the sampling times for the data are given by ft1; t�+1; t2�+1; : : : ; t�g, and
the data elements will also be labeled to correspond to the pixels: fd1; d�+1; d2�+1; : : : ; d�g. The
collection of all of the data will be labeled as D, while the collection of all of the pixels will be
labeled as U .
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The data D consists of values of the signal U plus noise:

di = ui + ni i = f1; � + 1; 2� + 1; : : : ; �g (6)

where ni is the value of a randomly varying component that one has no way to predict. The problem
is to make the best estimate of any one of the pixels possible. Because we will estimate an arbitrary
pixel uj , we will have estimated all of them by letting j take on any value f0 � j � � + 1g. From
the standpoint of probability theory, all of the information relevant to this inference is contained in
a probability density function: P (uj jD; I), the probability that the signal has value uj , given the
data and the prior information I . This probability is computed using the sum rule

P (uj jD; I) =
Z
� � �dui � � �| {z }

i6=j

P (U jD; I); (7)

where P (U jD; I) is the joint probability for all of the pixel values. The integrals are over all pixel
values, except uj .

Bayes theorem [1] may be used to factor P (U jD; I) to obtain

P (uj jD; I) =
Z
� � �dui � � �| {z }

i 6=j

P (U jI)P (DjU; I)

P (DjI)
; (8)

where P (U jI) is the joint prior probability for all the pixel values, P (DjU; I) is the probability for
the data given the pixel values, and P (DjI) is a normalization constant.

Making the standard assumptions about the noise, the probability for the data given U is just
the likelihood function

P (Dj�; U; I) = (2��2)�
N
2 exp

(
�

1

2�2

�X
i=1
by �

(di � ui)
2

)
; (9)

where the standard deviation of the noise, �, has been added to the direct probability for the data
in a way that indicates its value is known. Later, the rules of probability theory will be applied to
remove � from the problem, if its actual value is unknown. The index i [on the sum in Eq. (9)],
means that i starts at 1 and goes to � in steps of �. Substituting the direct probability into the
posterior probability, Eq. (8), and assuming normalization will occur at the end of the calculation,
one obtains

P (uj j�;D; I)/

Z
� � �dui � � �| {z }

i6=j

P (U jI)��N exp

(
�

1

2�2

�X
i=1
by �

(di � ui)
2

)
: (10)

The problem has been reduced to specifying the prior probability, P (U jI).
If one were to ignore the prior, as would using maximum likelihood, then all of the pixels values

associated with the data values are estimated to be equal to the data, uj = dj , while all of the
interpolation pixels are estimated to be zero. This is the maximum likelihood or least squares
solution to this problem. But probability theory automatically tells one this is not correct. It is
the product of a weighted average of the prior and the likelihood that must be considered. This
weighted average will be very di�erent from the maximum likelihood solution. And this di�erence
is maintained even in the limit of very uninformative prior information.

For any given problem there could be a great deal of prior information available. For example, if
the data were the output from a continuous wave radar, then the signal will look highly sinusoidal;
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yet signi�cant deviations will occur near the beginning and ending of the signal. If the radar were
a pulsed radar, the signal would, at least super�cially, like the derivative of a Gaussian. Again
there could be signi�cant deviations. This information is qualitatively di�erent from that normally
associated with a model, where the prior information insists that the signal must be of a certain
functional form and any deviations from it are to be considered noise. Here the signal should
be allowed to make deviations from the functional forms when the data shows evidence for such
deviations. This type of prior information will be called \soft" because we do not insist that the
signal have this functional form.

In addition to this soft prior information about the functional form of the signal, one might
know some general characteristics about the signal. For example, the signal might be generated by
some analogue electronics. Electronics never generates perfectly sharp signals; it always averages
things out. Could smoothness be used as \soft" prior information?

The answers to this question is yes! It is possible to include both types of \soft" prior information
in the calculation. Probability theory can be told that the signal is more or less sinusoidal, without
insisting that it be sinusoidal, just as it will be possible to tell probability theory that the signal
should be smooth without insisting that the signal must be smooth. To see how to do this, the
interpolation problem will be investigated using both of these types of \soft" prior information. We
begin by including prior information about the \smoothness' of the signal, and then in the next
section proceed to include \soft" information about the functional form of the signal.

1.1 Constraining The Second Derivative

In the traditional interpolation problem, the data is assumed noiseless and one is trying to inter-
polate between data values. The criteria used in splines is typically minimum arc length, and one
seeks the shortest interpolation function. Here noise is allowed into the problem. This noise could
be either positive or negative and its e�ect is to make the data \jitter" around the \signal" in
a random way. This jitter should be suppressed as much as possible. Mathematically this jitter
corresponds to a rapidly varying second derivative. It can be suppressed if the second derivative of
the signal can, in some sense, be made \small."

The data are sampled at discrete times. The �rst and second derivatives are not de�ned for
discrete functions. However, one can de�ne analogous quantities which reduce to the �rst and
second derivative as the sampling density goes to in�nity. The �rst derivative of a continuous
function may be de�ned as

df(t)

dt
= lim

�!0

f(t +�)� f(t ��)

2�
: (11)

For a discretely sampled function this becomes

df(ti)

dti
=

f(ti +�)� f(ti ��)

2�
(12)

where f(ti +�) = f(ti+1) is the function at the forward sampling time, f(ti ��) = f(ti�1) is the
function at the backward sampling time, and

� � ti+1 � ti = ti � ti�1 (13)

is the sampling time. It is clear from this de�nition that the discrete �rst derivative is only an
approximation. This approximation is accurate to order �. So if delta is 0:01, i.e., if data were
collected every 0.01 seconds, then the discrete �rst derivative will be accurate to �0:01.
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The second derivative is just a derivative of a derivative and is de�ned as

d2f(t)

dt2
= lim

�!0

f(t+ 2�)� f(t)

2�
�
f(t)� f(t � 2�)

2�
2�

: (14)

This can be rewritten as

d2f(t)

dt2
= lim

�!0

f(t+ 2�) + f(t � 2�)� 2f(t)

4�2
: (15)

The corresponding equation for a discretely sampled signal is given by

d2f(ti)

dt2
=

f(ti+1) + f(ti�1)� 2f(ti)

�2
: (16)

Note that this approximation is accurate to order �2, so if � is small, second derivatives my be
evaluated very precisely, provided su�cient machine accuracy is available.

Now that we have a de�nition of the discrete second derivative, the prior information, that it
must be \small" must be translated into a prior probability P (U jI). But the second derivative can
be positive or negative. Additionally, the second derivative is de�ned at every data point, so what
is meant by \small"? Here \small' will mean that the mean-square value of the second di�erence
should be small:

�X
j=1

[uj+1 + uj�1 � 2uj ]
2 = �2; (17)

where �2 is the total second di�erence. This equation will be referred to as a constraint on the
second derivative for reasons that will become apparent shortly. The quantity �, is a measure of
the \smallness" of the second derivative. When � is large, large jitter is allowed and the signal
will be estimated to be the data values. When � ! 0, no jitter is allowed, and the signal will be
estimated to be constant. Somewhere between these extreme values is one which will suppress the
jitter without suppressing the signal.

Note that this constraint introduces other parameters into the problem. If for example � =
1, the constraint introduces three new parameters: two \boundary" pixels, u0 and u�+1, and a
regularization parameter which will be called � and is related to �2. If � > 1, the constraint also
introduces the \interpolation" pixels into the problem.

The process of converting Eq. (17) into a prior probability density function is a straightforward
application of the principle of maximum entropy and results in the assignment of a Gaussian prior
probability:

P (u1; : : : ; u� ju0; u�+1; �; �; I)/ exp

(
�

�2

2�2

�X
i=1

[ui+1 + ui�1 � 2ui]
2

)
; (18)

where �2=�2 is the Lagrange multiplier from the maximum entropy calculation. The fractional
variance �2 will be used to control the amount of smoothing and is related to the mean-square
second derivative.

Three additional parameters: u0 and u�+1, the boundary pixels, and the fractional variance �
have entered the problem. These parameters were added to the prior in a way that indicates that
their values are given. Of course in a real problem their values will not be known and inferences
must be made about them. All three of these parameters are nuisances in the sense that one would
like to formulate the problem independent of their value. This may be done readily for u0, and
u�+1; but � will prove to be harder to deal with.
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What we have derives so far is the prior probability for the interior pixels given the boundary
pixels. What is needed is the prior probability for all of the pixels. To compute this the joint prior
for all of the pixels is factored using the product rule to obtain:

P (u0; : : : ; u�+1j�; �I) = P (u0; u�+1j�; �; I)P (u1; : : : ; u� ju0; u�+1; �; �; I) (19)

where P (u0; : : : ; u�+1j�; �I) is the joint prior for the interior and boundary pixels; the joint prob-
ability for the interior pixels given the boundary pixels, P (u1; : : : ; u�ju0; u�+1; �; �; I), is given by
Eq.(18) and P (u0; u�+1j�; �; I) is the prior probability for the boundary pixels.

To assign the prior probability for these two boundary pixels, P (u0; u�+1j�; �; I), a di�erent
interpretation of the second derivative will be used. Suppose it is known that adjacent pixels
should be approximately equal:

ui �
ui+1 + ui�1

2
: (20)

This may be rewritten as
ui+1 + ui�1 � 2ui � 0: (21)

But this is essentially just the statement that the second derivative should be small. So constrain-
ing the second derivative to be small is equivalent to asserting that neighboring pixels should be
approximately equal. On the boundary this could be interpreted as

u0 � u1 and u� � u�+1: (22)

Converting this prior information into a prior probability for u0, one obtains

P (u0j�; �; I)/ exp

(
�

�2

2�2
(u0 � u1)

2

)
; (23)

and similarly for u�+1

P (u�+1j�; �; I)/ exp

(
�

�2

2�2
(u�+1 � u�)

2

)
: (24)

To combine these priors, one uses the product rule to factor P (u0; u�+1j�; �; I), and assuming
independence one obtains:

P (u0; u�+1j�; �; I) = P (u0j�; �; I)P (u�+1j�; �; I): (25)

Substituting for P (u0j�; �; I) and P (u�+1j�; �; I), one obtains

P (u0; u�+1j�; �; I) / exp

(
�

�2

2�2
[u0 � u1]

2 �
�2

2�2
[u�+1 � u� ]

2

)
(26)

as the joint prior probability for the boundary pixels. Substituting the joint prior for the boundary
pixels, Eq. (26), and the prior for the interior pixels, Eq. (18), into the prior probability for all of
the pixels including the boundary pixels, one obtains

P (u0; : : : ; u�+1j�; �; I) / exp

(
�

�2

2�2
[u0 � u1]

2 �
�2

2�2
[u�+1 � u� ]

2

)

� exp

(
�

�2

2�2

�X
i=1

[ui+1 + ui�1 � 2ui]
2

)
:

(27)

8



This prior can be rewritten as

P (u0; : : : ; u�+1j�; �; I) = [�0 � � ���+1]
1

2

 
2��2

�2

!� �+2
2

exp

(
�

�2

2�2

�+1X
k=0

�+1X
l=0

Rklukul

)
; (28)

where f�0; : : : ; ��+1g are the eigenvalues of the matrix Rkl de�ned as

Rkl �

0
BBBBBBBBBBBBBBBBB@

2 �3 1 0 � � � � � � � � � � � � 0

�3 6 �4 1 0
.. .

. . .
. . .

...

1 �4 6 �4 1
.. .

. . .
. . .

...

0 1 �4 6 �4 1
.. .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . . 1 �4 6 �4 1 0

...
. . .

. . .
. . . 1 �4 6 �4 1

...
. . .

. . .
. . .

. . . 1 �4 6 �3
0 � � � � � � � � � � � � 0 1 �3 2

1
CCCCCCCCCCCCCCCCCA

(0 � k; l � � + 1): (29)

Note that in writing the prior in this form, it has been implicitly assumed that the Rkl matrix
is not singular. As this prior is written, this is not the case! The Rkl matrix has one singular
eigenvalue. Apparently one of the two boundary conditions was redundant. This problem must be
resolved before any numerical calculations can be done. The condition that the boundary pixels
should be approximately equal to the interior pixels at the boundary be maintained. This can be
done by making a slight change in the boundary conditions:

u0 � 0:999u1 and u� � 1:001u�+1: (30)

Making this slight change removes the singular eigenvalue and allows the prior to be normalized,
without changing the spirit of the boundary condition.

1.2 Eliminating Nuisance Parameters

Now that the prior has been speci�ed, it may be substituted into the posterior probability for pixel
uj , Eq. (10), to obtain

P (uj j�; �;D; I) /
Z
� � �dui � � �| {z }

i6=j

[�0 � � ���+1]
1

2 ��(N+�+2)��+2

� exp

(
�

�2

2�2

�+1X
k=0

�+1X
l=0

Rklukul

)

� exp

(
�

1

2�2

�X
i=1
by �

[di � ui]
2

)
:

(31)

The integrals are over all pixels, except i = j. There are � + 1 integrals to evaluate.
To evaluate these integrals, the exponent in the likelihood is squared to obtain:

P (uj j�; �;D; I) /

Z
� � �dui � � �| {z }

i6=j

[�0 � � ���+1]
1

2��(�+N+2)��+2

� exp

(
�

1

2�2

�
Nd2 � 2

�X
i=1
by �

diui +
�+1X
k=0

�+1X
l=0

gklukul

�) (32)
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where d2 is the mean-square data value, de�ned as

d2 �
1

N

�X
i=1
by �

d2i ; (33)

and the interaction matrix gkl is de�ned as

gkl � �2Rkl + Skl 0 � k; l � � + 1: (34)

The matrix Skl is diagonal and de�ned as

Skl =

8><
>:

1 If k = l and mod(k � 1; �) = 0

0 otherwise;

(35)

where \mod(k � 1; �) = 0" means that (k � 1) is evenly divisible by �.
There is no integral over uj , consequently uj behaves like a constant. Separating uj from the

integration variables one has

P (uj j�; �;D; I) /
Z
� � �dui � � �| {z }

i6=j

[�0 � � ���+1]
1

2��(N+�+2)��+2

� exp

(
�
Nd2 � 2djujz + gjju

2
j

2�2

)

� exp

(
�

1

2�2

� �+1X
k=0
k 6=j

�+1X
l=0
l6=j

gklukul � 2
�X

i=1
by �
i6=j

[di � gijuj ]ui

�) (36)

where

z �

8<
:

1 if j = f1; �+ 1; 2� + 1; : : : ; �g

0 otherwise.
(37)

Now that the dependence on uj has been separated from the integration variables, the integrals
may be done by the following change of variables:

Ak =
q
�0k

�+1X
i=0
i6=j

uieki (k 6= j); (38)

where the uk are given by

uk =
�+1X
i=0
i6=j

Aieikq
�0i

(k 6= j); (39)

and �0i is the ith eigenvalue of the jth cofactor of the gik matrix, Eq. (34), and eik is the kth
component of its ith eigenvector. As a reminder, the jth cofactor of a square matrix of rank � + 2
is a square matrix of rank � + 1. The cofactor is formed by deleting the jth row and column
from Eq. (34). Note that in de�ning the cofactor matrix the indices have not been relabeled; they
still run from zero to � + 1; however, the jth item no longer exists and must be skipped in all
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summation. This will be noted in the equations where applicable. These new integration variables
have the property that

�+1X
k=0
k 6=j

glkeik = �0ieil (i; l 6= j); (40)

and
�+1X
k=0
k 6=j

elkeik = �li (i; l 6= j) (41)

where �li is the Kronecker delta function. The volume element of the transformation is given by

dA0 � � �dAj�1dAj+1 � � �dA�+1q
�00 � � ��

0
j�1�

0
j+1 � � ��

0
�+1

= du0 � � �duj�1duj+1 � � �du�+1: (42)

Making the change of variables and introducing a new quantity hl(uj):

hl(uj) �
1q
�0l

�X
i=1
by �
i6=j

[di � gijuj ]eli (l 6= j) (43)

one obtains

P (uj j�; �;D; I) / ��(N+�+2)��+2 exp

(
�
Nd2 � 2djujz + gjju

2
j � h(uj) � h(uj)

2�2

)

�

Z
� � �dAi � � �| {z }

i6=j

exp

(
�

1

2�2

�+1X
i=0
i6=j

[Ai � hi(uj)]
2

) (44)

where the square on the quadratic terms was completed, some factors of 2� were dropped, the
determinant (which is a constant here) was also dropped. The quantity h(uj) � h(uj) is de�ned as

h(uj) � h(uj) �
�+1X
i=0
i 6=j

hi(uj)
2: (45)

Evaluating the � + 1 integrals gives a factor of (2��2)(�+1)=2, and one obtains

P (uj j�; �;D; I)/ ��(N+1)��+2 exp

(
�
Nd2 � 2djujz + gjju

2
j � h(uj) � h(uj)

2�2

)
(46)

as the posterior probability for the jth pixel. If as assumed so far, the variance of the noise and the
value of the fractional variance � are actually known, then there are a number of additional terms
that are constants and these constants will cancel when the distribution is normalized. Dropping
these terms, one obtains

P (uj j�; �;D; I)/ exp

(
2djujz � gjju

2
j + h(uj) � h(uj)

2�2

)
(47)

as the posterior probability for the jth pixel given the standard deviation of the noise, the fractional
variance, the data D, and the prior information I .
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1.3 Eliminating � As A Nuisance Parameter

In most real problems neither � nor � are known; they are nuisance parameters and should be
treated as such. This is easy for �, but � is more di�cult to deal with. To make inferences about
uj independent of � we apply the sum rule to obtain

P (uj j�;D; I) =

Z
d�P (uj ; �j�;D; I): (48)

The right-hand-side of this equation may be factored to obtain

P (uj ; �j�;D; I) = P (uj ; �j�; I)P (Djuj; �; �; I)

= P (uj jI)P (�jI)P (Djuj; �; �; I)

= P (�jI)P (uj jD; �; �; I)

(49)

where it was assumed that the prior probability, P (uj ; �j�; I), was independent of � and that
P (uj ; �jI) = P (uijI)P (�jI). Inserting this result into Eq. (48) one obtains

P (uj j�;D; I) =

Z
d�P (�jI)P (ujj�; �;D; I) (50)

where P (�jI) is the prior probability for the variance, and P (uj j�; �;D; I) is proportional to Eq. (46).
The posterior probability for uj may be computed provided a prior is assigned to the noise

standard deviation. Having no speci�c information about �, a Je�reys prior 1=� [4] is assigned to
obtain:

P (uj j�;D; I)/

Z 1

0
d���(N+1) exp

�
�

1

2�2

h
Nd2 � 2djujz + gjju

2
j � h(uj) � h(uj)

i�
: (51)

Evaluating the integral, one obtains

P (uj j�;D; I) /

"
1�

h(uj) � h(uj) + 2djujz � gjju
2
j

Nd2

#�N
2

: (52)

This is a Student t-distribution, and it is this result that is applied in the numerical examples.
Suppose a simple experiment has been run for 100 seconds and a data item was gathered every

second, thus obtaining N = 100 data samples. Suppose the data gathered in this experiment
looked like that shown in Fig. 1 (a constant signal of value 5, plus Gaussian white noise of standard
deviation of 1). In the calculation so far, only one pixel may be estimated at a time. But any
pixel may be estimated, so all of them may be estimated. In this numerical example, j = 59 will
be used. At the end of the example, the results will be shown for all of the pixels. To estimate
u59 one needs only to apply the posterior probability for the pixels. But this probability density
function assumes the value of � is known and the estimated pixel value depends on what value of �
is chosen. Before the pixel value can be estimated, a procedure must be developed that allows one
to estimate or set � to a reasonable value.

1.4 Estimating The Regularizer �

If one follows the rules of probability theory exactly, the way to proceed is to multiply the probability
for the pixel given the value of �, by a prior probability for � and integrate. Unfortunately, � appears
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Figure 1: Interpolation { The Data

Fig. 1. The data contain a constant signal of value 5, plus noise of standard deviation one. The problem is

to make the best estimate of a pixel given only the information that the function must be smooth and these

data.

in the problem in a very nonlinear way and evaluating the integral in closed form has not proven
possible. However, there are approximations which will allow one to proceed and obtain results
that are nearly identical to the exact procedure. If the joint posterior probability for pixel u59
and � is sharply peaked, then removing the regularizer by integration, essentially just constrains
the regularizer to its value at the maximum of the joint posterior probability. If the value of
the regularizer near the maximum can be determined, then � can be constrained to this value
in Eq. (52). The results obtained will be nearly identical to what would have been obtained by
removing � by integration [7].

To determine a reasonable value of �, the probability density for the regularizer will be computed.
From this probability density function one can locate the value of � for which the posterior is
maximized. This maximum may be used in Eq. (52) to obtain the posterior probability for the
pixels. The estimated pixel value are dependent on the value of �, so it is important that a value
near the most probable value be used when estimating the pixels.

To illustrate that a good estimate of � is necessary, consider Fig. 2. Here two di�erent values
of � were used: one small and one large. In panel 2(A), � = 0:01. The data values are shown as
open circles, and the reconstruction is shown as the solid line. The pixel estimates plotted are the
mean or expected values of the pixels. These were computed using the procedures developed in
Section 4.1. For now it is enough to know that the values are just the ones given by the maximum
of the posterior probability for the pixels, given the value of �, Eq. (52). For small �, the prior
information is essentially irrelevant, and the pixels are estimated to be equal to the data values.
This e�ect is seen in panel 2(A), where the reconstruction follows the data almost exactly. The
opposite e�ect occurs when � ! 1. Here the prior is important and the data are irrelevant, and
the pixels are estimated to be a constant, zero. Somewhere between these two extreme values is
region which is appropriate for this problem.
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Figure 2: The Estimated Pixels As A Function Of �

Fig. 2. Panel (A) contains the data (open circles) and the estimated pixel values (solid line) for � = 0:01.

Here � is too small and the reconstruction pays too much attention to the data. In panel (B), � = 1; 000; 000,

and is too large; the estimated pixels (solid line) does not pay enough attention to the data (open circles).
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To �nd this region, one can compute the posterior probability for �. Using the sum rule from
probability theory, this is given by

P (�jD; I) =
Z
du0 � � �du�+1d�P (�; �; u0; : : : ; u�+1jD; I): (53)

The integrand can be factored using the same steps shown in Eq. (48) to obtain

P (�jD; I) =
Z
du0 � � �du�+1d�P (�; �jI)P (u0; : : : ; u�+1j�; �;D; I) (54)

where P (�; �jI) is the joint prior probability for � and �. Further, P (u0; : : : ; u�+1j�; �;D; I) can be
factored to obtain

P (�jD; I) =
Z
du0 : : :du�+1d�P (�jI)P (�jI)

� P (u0; : : : ; u�+1j�; �; I)P (Dj�; �; u0; : : : ; u�+1; I)
(55)

where P (u0; : : : ; u�+1j�; �; I) is the prior probability for all of the pixels given �, �, and the prior
information I ; and it is given by Eq. (18), P (Dj�; �; u0; : : : ; u�+1; I) is the likelihood for the data
and is given by Eq. (9), and P (�jI) is the prior probability for � and was assumed independent of
�. Substituting Eq. (9) for the likelihood, Eq. (18), for the prior probability for the pixels and a
Je�reys prior for both � and � one obtains:

P (�jD; I) /

Z
du0 : : : du�+1d�[�0 � � ���+1]

1

2 ��(�+N+3)��+1

� exp

(
�

�2

2�2

�+1X
k=0

�+1X
l=0

Rklukul

)

� exp

(
�

1

2�2

�X
i=1
by �

[di � ui]
2

) (56)

where the eigenvalues f�0; : : : ; ��+1g must now be kept, because they are functions of �.
To evaluate these � + 3 integrals (� + 2 integrals over the ui, and one over �) the quadratic in

the likelihood is expanded to obtain something very much like Eq. (32):

P (�jD; I) /

Z
u1; : : : ; u� d�[�0 � � ���+1]

1

2 ��(�+N+1)��+1

� exp

(
�

1

2�2

�
Nd2 � 2

�X
i=1
by �

diui +
�+1X
k=0

�+1X
l=0

gklukul

�)
;

(57)

where gkl was de�ned earlier in Eq. (34). Unlike what was done earlier, here there are �+2 integrals
over all of the ui. Thus no intermediate steps are involved where the cofactor of gkl was de�ned.
All that is necessary is that the gkl matrix be diagonalized.

In the process of doing these calculations, several matrices will have to be diagonalized, and
the procedures for doing so are all essentially the same. One introduces a new set of integration
variables based on the singular-value decomposition of the interaction matrix, and transforms to
the new variables. In these variables all of the Gaussian quadrature integrals separate and may be
done trivially. Because all of these integrations are very similar, the details will be omitted and
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only the results of the calculations given. In this case, after having evaluated the � + 2 integrals
the posterior probability for � independent of the pixel values is given by

P (�jD; I) =

Z
d�

 
�0 � � ���+1
�00 � � ��

0
�+1

!1

2

��(N+1)��+1

� exp

(
�
Nd2 � h(�) � h(�)

2�2

) (58)

where

hl(�) �
1q
�0l

�X
i=1
by �

dieli; (59)

h(�) � h(�) �
�+1X
i=0

hi(�)
2; (60)

f�0; : : : ; ��+1g are the eigenvalues of the Rik matrix de�ned in Eq. (29) and f�00; : : : ; �
0
�+1g and eli

are the eigenvalues and eigenvectors of the gik matrix de�ned in Eq. (34).
The remaining integral is very similar to what was done earlier, Eq. (52), when � was removed

and again only the results are given here

P (�jD; I) /

 
�0 � � ���+1
�00 � � ��

0
�+1

! 1

2

��+1
�
1�

h(�) � h(�)

Nd2

��N
2

: (61)

When � ! 0, there is e�ectively no prior, and the pixel estimates go to data values. However,
when � ! 1, the prior dominates and forces the second derivative to zero and the reconstruction
goes to a constant. As � = 0 the likelihood term [the term in square brackets in Eq. (61)] is going
to in�nity like ��N . However, the prior term (essentially ��+1) is going to zero at exactly the
same time. Somewhere between these two extreme values there lies a maximum in the posterior
probability that acts as a trade o� between the prior and the likelihood.

Figure 1 contains a simple data set with N = 100 data values. The \signal" in these data is a
constant of value 5, plus additive white noise of standard deviation 1. Using the procedures derived
so far, the value of the 59'th pixel is to be estimated. As was mentioned earlier, before the value
of pixel u59 may be estimated, one must set the value of �. Using the posterior probability for
�, this may now be done. This probability density function is plotted in Fig. 3. This probability
distribution has a well de�ned maximum near 70, and a mean value of approximately 93. Note
that for values of � smaller than 10 and larger than 270, the probability for � is essentially zero. So
whatever value of � is used, it should be somewhere in these bounds.

Figure 4 contains the posterior probability for u59 given � = 10; 80; 93, and 200. Note that
for the maximum and mean (Panels B and C), the posterior probabilities are almost identical.
However, when � is too small (Panel A), the posterior probability is smeared out and broad; on the
other hand, when � is too large (Panel D), the posterior probability is too narrow. It is interesting
to note that as � ! 0 the width of the posterior probability becomes large, while the estimated
pixel values go to the data values. Estimating the pixels to be equal to the data is the maximum
likelihood result. In this limit, there is no prior information about the signal. Probability theory
is warning you that there is no way to di�erentiate between the signal and the noise; the signal
could be anything consistent with the total mean-square data value. In the other limit, � ! 1,
deviations from a constant are not allowed. Essentially the results goes to the mean � standard
deviation estimate of the constant.
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Figure 3: The Posterior Probability for �

Fig. 3. The posterior probability for � was computed using the constraint on the second derivative. This

probability density function has a well de�ned maximumwith a peak near � � 80, and a mean value of 93.

2 Data Interpolation { General Prior Information

Before proceeding to the deconvolution problem, the data interpolation problem will be generalized
to include other types of prior information. Three types of prior information will be included:
information about the functional form of the signal and about its �rst and second derivatives. As
was demonstrated in the previous section, what di�erentiates the results of a probability theory
calculation from a maximum likelihood or least squares calculation is the presence of the prior
probability. In the previous section only prior information about the second derivative was used,
here three di�erent types of prior information will be used. To utilize all of this information there
are two tasks that must be completed: �rst, each of these three pieces of information must be
formulated into a prior probability, and second, these di�erent priors must be combined into a
single prior which expresses all three pieces of information.

To see how to convert each of the three types of prior information into a prior probabilities,
suppose the signal is known to be sinusoidal. The total di�erence between the signal and the data
is given by

NX
i=1

[ui �A cos(!ti + �)]: (62)

What is actually known about this di�erence? Would one expect this to be zero, positive, or
negative? If the signal is known to be more or less sinusoidal, then on average one would expect the
di�erence to be small and its value could be either positive or negative. So the prior information is
consistent with a zero mean value: i.e., no information is available that would lead us to expect this
di�erence to be either positive or negative upon repeating the experiment many times. Second, the
mean-square di�erence is expected to be nonzero; i.e., we expect some deviations from the model.
Now the principle of maximum entropy can be used to assign a probability density function to this
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Figure 4: The Posterior Probability for Pixel u59

Fig. 4. The posterior probability for u59 is shown for � = 10 panel (A), � = 80 panel (B), � = 93 panel (C),

and � = 200 panel (D). Panels (B) and (C) correspond to the peak and expected values of �.
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di�erence. But note that this di�erence is not necessarily noise, it merely re
ects our uncertainty
in the actual functional form of the signal. When maximum entropy is applied, it will assign a
Gaussian prior to this di�erence. Because for a �xed mean-square the Gaussian has highest entropy,
and is therefore the least informative distribution possible. From the Gaussian distribution one can
assign a prior probability for the di�erence between the pixels and the model. For this sinusoidal
example, this probability density function is given by

P (uijA; !; �; �; �; I1) = ��N�N exp

(
�

�2

2�2

NX
i=1

[ui � A cos(!ti + �)]2
)
; (63)

where the parameter � measures the amount of mis�t between the pixels and the model. As
occurred in the previous example, this prior has introduced a number of additional parameters: A
an amplitude, � a phase, ! a frequency, and a fractional variance �2. Some of these parameters may
be known, but more likely either they will have to be eliminated from the problem, or inferences will
have to be made about them. For the time being, no assumptions will be made, and the problem
will be formulated in a way that either they may be eliminated as nuisances or inferences may be
made about them.

2.1 Formulating The Prior Probability

Three types of prior information will be included in this generalization of the interpolation problem:
information on the functional form, and on the �rst and second derivatives. These will be labeled
I1, I2 and I3 respectively. The prior for each of these will be formulated separately and then
combined into a single prior for use in the generalized interpolation calculation.

Information I1 will be addressed �rst. This information assumes that something is known
about the functional form of the signal. The functional form will be written as Af1(ti), where A
is an amplitude and, for example, f1(ti) might be a sinusoid. The total mean-square di�erence �21
between the model and the pixels is given by

�X
i=1

[ui � Af1(ti)]
2 = �21: (64)

If �1 = 0, the model must follow the functional form exactly. If �1 ! 1 then the total squared
di�erence goes to in�nity and the reconstruction will follow the data.

Using information I1 in a maximum entropy calculation results in assigning a Gaussian prior

P (u0; : : : ; u�+1jA; �1; �; I1) / exp

(
�
�21
�2

�+1X
i=0

[ui � Af1(ti)]
2

)
(65)

where �1 is the fractional variance associated with information I1. As was noted earlier, the prior
has introduced two new parameters: A, �1. Last, note that the prior has not yet been normalized,
this will be done after combining the three priors.

Information I2 speci�es how the �rst derivative is to behave. Assuming the functional form of
the �rst derivative is given by Bf2(t) then

�X
i=1

[ui+1 � ui�1 � 2Bf2(ti)]
2 = �22 (66)

where B is an amplitude, and �2 is the total squared di�erence. Using this as a constraint in a
maximum entropy calculation allows us to assign a prior probability to the di�erence between the

19



modeled derivative and the pixels:

P (u1; : : : ; u� jB; u0; u�+1; �2; �; I2) / exp

(
�

�22
2�2

�X
i=1

[ui+1 � ui�1 � 2Bf2(ti)]
2

)
(67)

where two additional parameters, B the amplitude, and �22 the fractional variance have been intro-
duced.

Information I3 speci�es how the second derivative is to behave. Assuming the functional form
of the second derivative is given by Cf3(ti), one has

�X
i=1

[ui+1 + ui�1 � 2ui � Cf3(ti)]
2 = �23 (68)

where C is an amplitude associated with the second derivative, f3(t) is its functional form, and �23
is the total squared di�erence. Repeating the maximum entropy calculation gives

P (u1; : : : ; u� jC; u0; u�+1; �3; �; I3) / exp

(
�

�23
2�2

�X
i=1

[ui+1 + ui�1 � 2ui � Cf3(ti)]
2

)
(69)

as the prior probability for the pixels given information I3, where C is the amplitude, and �23 is the
associated fractional variance.

Note that three unknown amplitudes A, B, and C, three fractional variances �21, �
2
2 and �23, and

two boundary pixels u0 have entered the problem. The three amplitudes and all of the unknown
pixels will be eliminated from the problem as nuisance parameters. In this problem it is critically
important to ensure that proper priors are used. A proper prior is one which is normalizable.
Improper priors are ones which cannot be normalized. Strictly speaking a function that cannot be
normalized is not a probability density function. Two examples of improper priors are the Je�reys
prior and the uniform prior. The Je�reys prior is improper when the limits on the parameter are
taken from zero to in�nity. The uniform prior is improper whenever one of the limits is taken to
in�nity. In spite of this the use of improper or unnormalizable prior probabilities in parameter
estimation is often convenient and harmless. However, in this problem the use of improper priors

must be avoided because the normalization factor associated with the prior does not always cancel.

Consequently a normalized prior must be used for A, B and C as well as for all of the pixels. These
parameters are location parameters, and the prior which correctly express information about a
location parameter is a Gaussian. Consequently, the prior for the three amplitudes A, B, and C

will be taken as

P (A;B;Cj�0; Iold) = (2��2)�3=2�30 exp

(
�

�20
2�2

h
A2 +B2 + C2

i)
; (70)

where I ! Iold was made to di�erentiate I from I1, I2, and I3. This prior says that the three
amplitudes may be either positive or negative and we do not know which it is. If �0 is small,
then this prior does not express a strong opinion about the amplitudes, other than small absolute
magnitude is preferred. It will be assumed that �0 is set from prior information and that its actual
value is known. So long as this value is small, the only purpose served by the prior is to prevent
any singular mathematics from occurring because. So whatever value is assigned to �0, it will not
change the results, provided it �0 � �.

Just as information I1, I2 and I3 can be used to constrain the interior pixels, they may also be
used to constrain the boundary pixels. Information I1 speci�ed a functional form for the signal.
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There is no reason that f1(ti) cannot be evaluated at the boundary. This will give

P (u0j�1; I1) / exp

(
�

�21
2�2

[u0 �Af1(t0)]
2

)
(71)

and

P (u�+1j�1; I1) / exp

(
�

�21
2�2

[u�+1 � Af1(t�+1)]
2

)
(72)

as the prior probabilities for the lower and upper boundary pixels.
Information I2 speci�ed prior information about the �rst derivative. When the �rst derivative

was de�ned, a symmetric di�erence equation was written, Eq. (12). This symmetric di�erence can-
not be used on the boundary because it would introduce still more unknown parameters. However,
a forward and backward �rst derivative can be used. For u0 one has

P (u0j�2; �; I2) / exp

(
�

�22
2�2

[u1 � u0 �Bf2(t0)]
2

)
: (73)

Similarly a backward �rst derivative may be de�ned and used to formulate a prior for u�+1. This
prior is given by

P (u�+1j�2; �; I2) / exp

(
�

�22
2�2

[u�+1 � u� �Bf2(t�+1)]
2

)
: (74)

But just as occurred earlier, care must be taken here because these boundary conditions are not
enough to make the prior associated with I2 normalizable. So when this prior is actually pro-
grammed the constraints will have to be modi�ed just enough to make the matrices associated
with them nonsingular.

The last information I3 may be used to specify a prior on the two boundary pixels. However, now
we have a functional form for the second derivative. The second derivative cannot be interpreted
as specifying that neighboring pixels be approximately equal. That interpretation was possible
because the prior information assumed adjacent pixels were approximately equal. Here we could
specify a forward and backward second derivative, but that will not work because the forward
second derivative at t0 is the same as the symmetric second derivative at time t1, consequently we
would be trying to constrain the same quantity to two di�erent values. Without doing something
much more complicated, there is no easy way to constrain the boundary pixels using the functional
form of the second derivative. This is not a problem, because I1 and I2 have already supplied more
than enough information to form a normalizable prior for the boundary pixels.

2.2 Combining Di�erent Prior Information

From the previous subsection there are ten probability density functions expressing prior infor-
mation about the pixels (u0; : : : ; u�+1) and the amplitudes. What is needed is a single prior that
express the information contained in all ten of these priors. The process of combining these priors
is begun by adopting some new notation.

There are three amplitudes, two boundary pixels, and � interior pixels. There are � + 5 total
parameters (excluding the three fractional variances). All of them but one are to be eliminated as
nuisances. To facilitate this, the pixel values fu0; : : : ; u�+1g and the three amplitudes A, B and C
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will be taken as a collection V . The elements, vi, are de�ned as:

vi =

8>>>>><
>>>>>:

ui if 0 � i � � + 1,

A if i = � + 2,

B if i = � + 3,

C if i = � + 4:

(75)

In this notation the posterior probability for the jth pixel is given by

P (vj j�0; �1; �2; �3; �;D; I)/
Z
� � �dvi � � �| {z }

i6=j

P (V j�0; �1; �2; �3; �; I)�
�N exp

(
�

1

2�2

�X
i=1
by �

[di � vi]
2

)
; (76)

where the word \pixel" will be used to refer to all of the V , including the three amplitudes A,
B and C. The three regularizes have been added to the probability density function in a way
that indicates their value are known. As was done earlier, if there values are not actually known
probability theory will be used either estimate them or remove them.

In this problem it will be assumed that the prior information is independent and the prior
probability for the pixels given the total prior information is just the product of the probabilities
given the individual pieces of information:

P (V j�0; I1; I2; I3; Iold) = P (v0; : : : ; v�+1jI1; Iold)P (v0; : : : ; v�+1jI2; Iold)
� P (v0; : : : ; v�+1jI3; Iold)P (v�+2; v�+3; v�+4j�0; Iold);

(77)

where P (v0; : : : ; v�+1jI1; Iold) speci�es the prior probability for the interior and boundary pixels
given information I1, P (v0; : : : ; v�+1jI2; Iold) speci�es the prior given I2, P (v0; : : : ; v�+1jI3; Iold)
speci�es the prior given I3, and P (v�+2; v�+3; v�+4j�0; Iold) speci�es the prior information for the
three amplitudes. The independence assumption was used to factor the prior in this particular
fashion.

The �rst three terms are all of the form P (V j�1; I1; Iold). These may be factored into a lower
boundary prior, and interior prior and an outer boundary prior:

P (V j�1; I1; Iold) = P (v0j�1; I1; Iold)P (v1; : : : ; v� j�1; I1; Iold)P (v�+1j�1; I1; Iold): (78)

These three priors were given in the previous section. This process may be repeated for information
I2 and I3 with similar results. The remaining term, P (v�+2; v�+3; v�+4j�0; Iold), was given by
Eq. (70).

For information I1, the prior probability is given by Eq. (65)

P (V j�0; �1; �; I1; Iold) / exp

(
�
�20
�2

A2 �
�21
�2

�+1X
i=0

[vi �Af1(ti)]
2

)
; (79)

where the prior information for A, Eq. (70), was included in this equation. This may be rewritten
in matrix form as

P (V j�0; �1; �; I1; Iold) / exp

(
�

�21
2�2

�+4X
k=0

�+4X
l=0

Wklvkvl

)
(80)
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where the matrix Wkl is given by

Wkl �

0
BBBBBBBBBBBBBB@

1 0 � � � � � � 0 A0 0 0

0 1
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.
.

.

.

.

.

.
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.

.

.
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.

.
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.
.
.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
. .
.

. .
. 1 0

.

.

.

.

.

.

.

.

.

0 � � � � � � 0 1 A�+1

.

.

.

.

.

.

A0 � � � � � � � � � A�+1 A�+2

.

.

.

.

.

.

0 � � � � � � � � � � � � � � � 0

.

.

.

0 � � � � � � � � � � � � � � � � � � 0

1
CCCCCCCCCCCCCCA

(81)

with (0 � k; l � � + 4) and

Ai � �f1(ti); (0 � i � � + 1)

A�+2 �
�20
�21

+
�+1X
i=0

f1(ti)
2:

(82)

Similarly for information I2 the prior probability becomes

P (V j�0; �2; �; I2; Iold) / exp

(
�
�20
�2

B2 �
�22
2�2

�X
i=1

[vi+1 � vi�1 � 2Bf2(ti)]
2

)

� exp

(
�

�22
2�2

[v1 � v0 �Bf2(t0)]
2

)

� exp

(
�

�22
2�2

[v�+1 � v� � Bf2(t�+1)]
2

)
:

(83)

And in matrix form this prior is given by

P (V j�0; �2; �; I2; Iold) / exp

(
�

�22
2�2

�+4X
k=0

N+4X
l=0

Xklvkvl

)
: (84)

The matrix Xkl is given by

Xkl �

0
BBBBBBBBBBBBBBBBBBBBB@

2 �1 �1 0 � � � � � � � � � 0 B0 0

�1 2 0 �1
.. .

. . .
. . .

... B1

...

�1 0 2 0 �1
.. .

. . .
... B2

...
...

. . .
. . .

. . .
. . .

. . .
. . .

...
...

...
...

. . . �1 0 2 0 �1
... B��1

...
...

. . .
. . . �1 0 2 �1

... B�

...

0 � � � � � � 0 �1 �1 2
... B�+1

...

0 � � � � � � � � � � � � � � � � � � 0 0
...

B0 B1 B2 � � � B��1 B� B�+1 0 B�+3

...
0 � � � � � � � � � � � � � � � � � � � � � � � � 0

1
CCCCCCCCCCCCCCCCCCCCCA

(85)
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where (0 � k; l � � + 4) and

B0 = f2(t0) + f2(t1);

B1 = f2(t2)� f2(t0);

Bi = f2(ti+1)� f2(ti�1); (2 � i � � � 1)

B� = f2(t�+1)� f2(t��1);

B�+1 = �[f2(t�) + f2(t�+1)];

B�+3 =
�20
�22

+ f2(t0)
2 + 4

�X
i=1

f2(ti)
2 + f2(tN+1)

2:

(86)

Last, for information I3, the prior probability for the pixels is given by

P (V j�0; �3; �; I3; Iold) / exp

(
�
�20
�2

C2 �
�23
2�2

�X
i=1

[vi+1 + vi�1 � 2vi � Cf3(ti)]
2

)
; (87)

which can also be written as

P (V j�0; �3; �; I3; Iold) / exp

(
�

�23
2�2

�+4X
k=0

�+4X
i=0

Yklvkvl

)
(88)

with the matrix Ykl de�ned as

Ykl �

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

5 �4 1 0 � � � � � � � � � � � � 0 0 0 C0

�4 6 �4 1 0
.. .

. . .
. . .

...
...

... C1

1 �4 6 �4 1
.. .

. . .
. . .

...
...

... C2

0 1 �4 6 �4 1
.. .

. . .
...

...
... C3

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...
...

...
...

...
. . .

. . . 1 �4 6 �4 1 0
...

... C��2

...
. . .

. . .
. . . 1 �4 6 �4 1

...
... C��1

...
. . .

. . .
. . .

. . . 1 �4 6 �4
...

... C�

0 � � � � � � � � � � � � 0 1 �4 5
...

... C�+1

0 � � � � � � � � � � � � � � � � � � � � � � � � 0
... 0

0 � � � � � � � � � � � � � � � � � � � � � � � � � � � 0 0
C0 C1 C2 C3 � � � C��2 C��1 C� C�+1 0 0 C�+4

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

(89)

where (0 � k; l � � + 4) and

C0 = f3(t1)

C1 = f3(t2)� 2f3(t1)

Ci = 2f3(ti�1)� 2f3(ti) + f3(ti+1) (2 � i � � � 1)

C� = f3(t��1)� 2f3(t�)

C�+1 = f3(t�+1)]

C�+4 =
�20
�23

+
�X

i=1

f3(ti)
2:

(90)
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Finally, combining these three priors, one obtains the probability for the pixels given Iold, I1,
I2, and I3:

P (V j�0; �1; �2; �3; �; I) / exp

(
�

1

2�2

�+4X
k=0

�+4X
l=0

�
�21Wkl + �22Xkl + �23Ykl

�
vkvl

)
; (91)

where I1; I2; I3; Iold ! I .
Before returning to the main problem, this prior must be normalized. To do this the matrix

Zkl is de�ned:
Zkl � �21Wkl + �22Xkl + �23Ykl (92)

and the fully normalized prior probability for the pixels is given by

P (V j�0; �1; �2; �3; �; I) = (2��2)�
�+5
2

q
�0 � � ���+4 exp

(
�

1

2�2

�+4X
k=0

�+4X
l=0

Zklvkvl

)
(93)

where f�0; � � � ; ��+4g is the product of the eigenvalues of the Zjk matrix.
The prior, Eq. (93), may now be inserted into the posterior probability for the jth pixel, Eq. (76),

to obtain:

P (vj j�0; �1; �2; �3; �;D; I) /
Z
� � �dvi � � �| {z }

i6=j

��(�+5)
q
�0 � � ���+4

� exp

(
�

1

2�2

�+4X
k=0

�+4X
l=0

Zklvkvl

)

� ��N exp

(
�

1

2�2

�X
i=1
by �

(di � vi)
2

) (94)

where a factor of (2�)�
�+5
2 was dropped.

2.3 Eliminating Nuisance Parameters

To obtain the posterior probability for vj , all of the parameters except vj must be removed by
integration. There are � + 4 integrals that must be evaluated. These integrals are very similar
to those evaluated in the previous section and few of the details will be given. To evaluate these
integrals, the exponent in the likelihood, Eq. (94), is squared to obtain:

P (vj j�0; �1; �2; �3; �;D; I) /

Z
� � �dvi � � �| {z }

i 6=j

[�0 � � ���+4]
1

2 ��(N+�+5)

� exp

(
�

1

2�2

�
Nd2 � 2

�X
i=1
by �

divi +
�+4X
k=0

�+4X
l=0

gklvkvl

�) (95)

where d2 is the mean-square of the data, Eq. (33), and the interaction matrix, gkl, is given by

gkl � Zkl + Skl 0 � k; l � � + 4 (96)

where Skl was de�ned earlier, Eq. (35).
Note that the gkl matrix has been rede�ned. In fact that is not quite true, it has been generalized.

As we proceed though this calculation, each section will generalize the results from the previous
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sections. Whenever possible, these generalized equations will use the same notation to represent
the generalized quantity.

The integrals are over all of the V , except vj . Pixel vj behaves like a constant and must be
handled in a special manner. Separating vj from the integration variables one has

P (vj j�0; �1; �2; �3; �;D; I) /
Z
� � �dvi � � �| {z }

i6=j

[�0 � � ���+4]
1

2 ��(N+�+5)

� exp

(
�
Nd2 � 2djvjz + gjjv

2
j

2�2

)

� exp

(
�

1

2�2

� �+4X
k=0
k 6=j

�+4X
l=0
l6=j

gklvkvl � 2
�X

i=0
i 6=j

(di � gijvj)vi

�)
(97)

where z was de�ned earlier, Eq. (37).
Evaluating the � + 4 integrals gives

P (vj j�0; �1; �2; �3; �;D; I)/ exp

(
�
Nd2 � 2djvjz + gjjv

2
j � h(vj) � h(vj)

2�2

)
(98)

as the posterior probability for the jth pixel with

hl(vj) �
1q
�0l

�X
i=1
by �
i6=j

[di � gjivj ]eli (l 6= j) (99)

and

h(vj) � h(vj) �
�+4X
i=0

hi(vj)
2 (i 6= j) (100)

where eli is the ith component of the lth eigenvector of the jth cofactor of Eq. (96) and �0i is the
ith eigenvalue of this matrix.

If the variance of the noise and the regularizes are actually known then the problem is completed
and Eq. (98) represents the best estimate of the jth pixel one can make given the three types of
prior information. However, in general � and �1; : : : ; �3, are not known and must be determined
from the data.

2.4 Eliminating � As A Nuisance Parameter

The posterior probability for vj independent of � is computed in a way analogous to what was
done in subsection 1.3. The details of the calculation will not be repeated here. However, as
a reminder, one must assign a prior probability to the standard deviation (here this is a Je�reys
prior), and integrate with respect to � over its valid range of values. Note that we cautioned against
using improper priors in this calculation and this is essential for location parameters. However,
for the scale parameters (the fractional variances, and �) use of improper priors is harmless. This
distribution is given by

P (vj j�0; �1; �2; �3; D; I)/

"
1�

h(vj) � h(vj) + 2djvjz � gjjv
2
j

Nd2

#� 1+N
2

: (101)

This is a Student t-distribution and this result will be applied in a numerical example, but before
it can be used, �0, �1, �2, and �3 must either be known or be estimated.
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2.5 Estimating The Regularizes

The joint posterior probability for �1, �2, and �3 will be computed and used to set the regularizes.
In this calculation �0 will be assumed known. This parameter relates to the prior uncertainty about
the amplitudes A, B, and C. It will be assumed that the experiment was designed in such a way
that is adequate to actually capture the data in question. This implies that one knows the strength
of the signal, at least to order of magnitude and this information was used in setting �0. However,
the other three parameters, �1, �2, and �3 relate to how important the prior information is compared
to the data and this is probably not known before actually taking the data. Inferences will have to
be made about these parameters.

To make inferences about these parameters, one uses the rules of probability theory to eliminate
the nuisance parameters from the problem. Here the standard deviation, �, will be removed from
the posterior probability, and then the rules of probability theory will be used to make inferences
about the three regularizer. This calculation is again essentially identical to what was done in
subsection 1.4 and the details of the calculation will not be given. To proceed a prior for �, �1, �2
and �3 must be assigned. Here a Je�reys priors will be used for the prior probability for all of the
regularization parameters; one obtains

P (�1; �2; �3j�0; D; I)/ (�1�2�3)
�1

 
�0 � � ���+4
�00 � � ��

0
�+4

! 1

2
�
1�

h(�1; �2; �3) � h(�1; �2; �3)

Nd2

��N
2

(102)

as the joint posterior probability for �1, �2, and �3, where

hl(�) �
1q
�0l

�X
i=1
by �

dieli; (103)

and

h(�1; �2; �3) � h(�1; �2; �3) �
�+4X
i=0

hi(�1; �2; �3)
2 (104)

where f�00; : : : ; �
0
�+4g and eli are the eigenvalues and eigenvectors of Eq. (96).

To illustrate the use of the joint posterior probability, the example begun in the previous
subsection will be continued. For simplicity only prior information about the functional form of
the signal will be used in this example. The data in this example are the same data used in Fig. 1.
These data has been repeated in Fig. 5. The solid line in Fig. 5 is the estimate of all of the pixel
values when the maximum of the posterior probability is used as the estimate. The dashed lines
are the estimated uncertainty in the pixel values in the (mean � standard deviation) sense. These
estimates assumed the value of the regularizer was known.

To set the regularizer, the posterior probability for �1 was computed. This is given by Fig. 6(A).
Note that this posterior probability density function has a well de�ned maximum near 3. If one
computes the mean value of �1, one �nds h�1i = 7:21. It is this mean value for �1 that was used
to compute the estimates shown in Fig. 5 as the solid line. Note that the estimated signal is 
at
and only very small deviations are observed from a constant value. Also note that the estimates
overlap the true value of the constant, 5.

Next the posterior probability for u59 was computed given that �1 = 1, see Fig. 6(B). This value
is relatively far from the value indicated by probability theory. Note that the probability for the
pixel is broad and smeared out, indicating that u59 has not been well estimated. But also note that
true value of the pixel is covered by this posterior! Panel (C) of Fig. 6 is the posterior probability
for u59 given that �1 = 7:21. Here, the posterior is much sharper, and the pixel is better resolved.
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Figure 5: Interpolation { Functional Form Prior Information

Fig. 5. The functional form of the signal was used in the prior probability. The maximum of the posterior

probability for the pixels with � = 7:21 is given by the solid line. The one-standard-deviation width of the

posterior is shown as the dotted lines. The data (open circles) are shown for reference.

It is possible to estimate the variance of the noise when �1 = 1 and �1 = 7:21. When �1 = 1 the
variance of the noise is estimated to be small: h�i = 0:77. When �1 = 7:21 it is estimated to be
h�i = 0:99. When the posterior probability for the pixels is computed, one �nds that the estimate
with the largest estimated noise level has a better determination of the pixels.

Last, note that the one-standard-deviation error bars shown in Fig. 5 are much narrower than
those shown in Fig. 1, indicating that the constraint on the functional form was much more infor-
mative than the constraint on the second derivative. But in both cases the estimates easily overlap
the true answers at one standard deviation.

3 Deconvolution

Now that the data interpolation problem has been thoroughly addressed, we are in a position to
proceed to the full deconvolution problem. Fortunately, the preceding sections have essentially
solved the deconvolution problem. As a reminder, in the deconvolution problem there is a data set
D that is composed of a signal plus additive noise:

di =

Z tN

t1

d�r(ti � �)u(�) + ni i = f1; � + 1; 2� + 1; : : : ; �g (105)

where r(ti � �) is the impulse response function. On a discrete grid, � takes on values only at the
discrete times �i and this equation is written

di =
�+1X
j=0

rijuj + ni i = f1; �+ 1; 2� + 1; : : : ; �g (106)
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Figure 6: The Posterior Probability for �1, and u59

Fig. 6. The posterior probability for �1 is shown in panel (A). Note that it rises very sharply and then

falls o� very slowly. The sharp rise indicates that the likelihood and the prior jointly determine a minimum

value for �1 well. But the likelihood is uninformative about large values of �1. The slow drop o� is just

the 1=�1 behavior in the prior. Panel (B) is the posterior probability for u59 given that �1 = 1. Note that

the probability is broad and smeared out, indicating that u59 has not been well estimated. Panel (C) is the

posterior probability for u59 given that �1 = 7:21. Here the posterior is much sharper, and the pixel is better

resolved.
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where
rij � r(ti � �j)�� (107)

and �� is the time interval between pixel values.
The calculation for the posterior probability for the pixel values proceeds just as in the previous

sections. The posterior probability for pixel vj is given by

P (vj j�0; �1; �2; �3; �;D; I)/

Z
� � �dvi � � �| {z }

i6=j

P (V jI)��N exp

(
�

1

2�2

�X
i=1
by �

"
di �

�+1X
k=0

rikvk

#2)
; (108)

where the prior P (V jI) will be taken as Eq. (93). Introduction of the convolution operation only
complicates the direct probability or likelihood, not the prior.

Squaring the likelihood and substituting Eq. (93) for the prior, one obtains

P (vj j�0; �1; �2; �3; D; I) /

Z
� � �dvi � � �| {z }

i 6=j

��(N+�+5)
q
�0 : : :��+4

� exp

(
�

1

2�2

�
Nd2 � 2

�+4X
k=0

vkDk +
�+4X
k=0

�+4X
l=0

gklvkvl

�) (109)

where Dk is a kind of weighted averaged over the data, and is de�ned as

Dk �

8>>>><
>>>>:

�X
i=1
by �

rikdi if 0 � k � � + 1

0 otherwise;

(110)

the gkl matrix generalizes to
gkl = Zkl + Skl; (111)

and Skl de�ned as

Skl �

8>>><
>>>:

�X
i=1
by �

rikril if 0 < k; l � � + 1

0 otherwise:

(112)

3.1 Eliminating Nuisance Parameters

As observed in subsection 1.3, the pixel being estimated, vj , behaves as if it were a constant in the
integrals and must be treated specially. This is done by separating vj from the integration variables
to obtain:

P (vj j�0; �1; �2; �3; �;D; I) /

Z
� � �dvi � � �| {z }

i6=j

��(N+�+5) exp

(
�
Nd2 � 2Djvj + gjjv

2
j

2�2

)

� exp

(
�

1

2�2

� �+4X
k=0
k 6=j

�+4X
l=0
l6=j

gklvkvl � 2
�+4X
i=0
i6=j

(Di � gji)vi

�)
:

(113)
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Evaluating the � + 4 integrals gives

P (vj j�0; �1; �2; �3; �;D; I)/ exp

(
�
Nd2 � 2djvj + gjjv

2
j � h(vj) � h(vj)

2�2

)
(114)

as the posterior probability for the jth pixel, where

hl(vj) �
1q
�0l

�+4X
i=0
i6=j

[Di � gjivj ]eli (l 6= j); (115)

h(vj) � h(vj) �
�+4X
i=0
i6=j

hi(vj)
2; (116)

eli is the ith component of the lth eigenvector of the jth cofactor of Eq. (111), and �0i is its ith
eigenvalue.

3.2 Eliminating � As A Nuisance Parameter

Computing the posterior probability for uj independent of � is essentially identical to what was
done in subsection 1.4 and the details of this calculation will not be given here. The posterior
probability for jth pixel value is given by

P (vj j�0; �1; �2; �3; D; I)/

"
1�

h(vj) � h(vj) + 2Djvj � gjjv
2
j

Nd2

#� 1+N
2

: (117)

This is a Student t-distribution and it is this result that is applied in the numerical examples. But
before any numerical calculation may be done �0 �1, �2, and �3 must either be known or estimated.

3.3 Estimating The Regularizes

As was done previously, �0 will be assumed known and inferences about �1, �2, and �3 will be made.
To proceed, a prior for �, �1, �2 and �3 must be assigned. Here Je�reys priors will be used for
all of the parameters. The prior probability for the pixels was already assigned, Eq. (93), and the
probability for the data is given by Eq. (9). Using these, one obtains the joint posterior probability
for �1, �2 and �3:

P (�1; �2; �3j�0; D; I) /
Z

dv0 : : : dv�+4d�

��1�2�3
[�0 � � ���+4]

1

2 ��(N+�+5)

� exp

(
�

1

2�2

�+4X
i=0

�+4X
j=0

Zijvivj

)

� exp

(
�

1

2�2

�X
i=1
by �

[di �
�+1X
k=0

rikvk ]
2

)
;

(118)

where the eigenvalues, f�0; : : : ; ��+5g, are the eigenvalues of Eq. (92), and ui [from Eq. (9)] was
replaced by vi to conform to the current notation. Evaluating all of the integrals and dropping
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some irrelevant constants, one obtains:

P (�1; �2; �3j�0; D; I)/ (�1�2�3)
�1

 
�0 � � ���+4
�00 � � ��

0
�+4

! 1

2
�
1�

h(�1; �2; �3) � h(�1; �2; �3)

Nd2

��N
2

(119)

as the joint posterior probability for the three fractional variances, where

hl(�1; �2; �3) �
1q
�0l

�+4X
i=0

Dieli; (120)

h(�1; �2; �3) � h(�1; �2; �3) �
�+4X
i=0

hi(�1; �2; �3)
2; (121)

f�00; : : : ; �
0
�+4g are the eigenvalues of the gkl matrix, Eq. (111), and eli is the ith component of the

lth eigenvector of this matrix.

3.4 Examples { Deconvolution

To illustrate this calculation, several deconvolution examples will be given which incorporate di�er-
ent types of prior information. In the �rst example, very little prior information will be available;
all that will be used is a constraint on the smoothness of the function. In the second example, more
prior information will be available, and the functional form of the signal will be used to constrain
the deconvolution. In the third example, both sets of prior information will be used to constrain
the deconvolution. The data will be simulated sinusoidal data that have been low-pass �ltered.
This problem is important in radar target identi�cation, because it is the free space signal that
must be known in the target identi�cation problem.

The signal function will be taken to be a pure sinusoid of known frequency and phase:

ui = 10 cos(0:3tj): (122)

However, this signal has been �ltered using a low-pass �lter:

r(ti) =
1

c
e�0:25ti (123)

where the constant c is given by

c =
NX
i=1

e�0:25ti (124)

and the times ti were taken to be 0; 1; : : : ; N � 1. Note that the smearing function is de�ned to
be zero for times less than t1 or greater than tN . The data are a convolution between the signal
function, u(t), and the impulse response function r(t):

di =
NX
j=1

10 cos(0:3tj)e
�0:25[ti�tj ]�(ti � tj)=c+ ni; (125)

where ni represents noise of unit standard deviation, and �(ti � tj) is the unit step function.
The �lter changes the amplitude of the response. Consequently, the time domain signal-to-noise

ratio is not 10; rather it is more like 5. A plot of the impulse response function for t100, is shown
in Fig. 7(A). Data item 100 is a weighted average of all of the preceding signal values. As you go
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Figure 7: Deconvolution { The Data

Fig. 7. The �lter response function, panel (A), mixes the components of the sinusoid. The mixing takes

place as a weighted average. Here all values from t = 100 backward in time are averaged to produce the

output from the �lter. The data, open circles panel (B), remain a sinusoid but shifted in time and with

decreased amplitude. The problem is to recover the original signal, solid line in panel (B).
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back in time, the signal values become less and less important in this average, �nally dropping to
essentially zero after 20 sampling intervals. The data values (convolved signal + noise) are shown
in Fig. 7(B) as the open circles. The true signal is shown as the solid line in panel 7(B). The
convolution introduces an e�ective amplitude change and phase shift, while the \noise" introduces
uncertainty about the \true" convolved signal.

To remove the e�ect of the convolution, a constraint on the second derivative will be used. To
apply the posterior probability for the pixels, one must �rst set the value of the regularizer. This
is done by computing the posterior probability for the regularizer given the data and the prior
information, Eq. (119). This is shown in Fig. 8(A). As in the previous examples, this probability
density function has a well de�ned maximum near �3 � 0:8. This maximum value was used in
computing the posterior probability for the pixel values, Eq. (117). The maximum of the posterior
probability for the pixels (solid line) plus or minus one standard deviation (dashed line) is shown
in 8(B). The true signal values are shown as the plus signs. Notice the true signal is covered almost
everywhere at one standard deviation. Also note that there is a systematic mis�t in the peaks
and valleys. That is because the prior information tries to make the second derivative as small
as possible. At these turning points the second derivative is at its maximum, so of course the
reconstruction will undershoot the mark here. Last, note that the reconstruction is bad near time
t = 100. But probability theory knows this and has widened the error bars, so that the true value
is still overlapped at two standard deviations.

In the second part of this example, use of the correct functional form of the signal will be
investigated. Here it will be assumed that the signal must be a cosine with the known correct
frequency. The posterior probability for the regularizer, Eq. (119), is shown in Fig. 9(A). Again
there is a peak near �1 � 0:25. This value of �1 was then used to compute the posterior probability
for each of the pixels, Eq. (117). The maximum of the posterior probability for each pixel is shown
in Fig 9(B) as the solid line. The one standard deviation error bars are shown as the dashed lines.
The true signal is shown as the plus signs. Note that the reconstruction follows the signal much
more closely: The true signal is easily covered by the one-standard-deviation error bars. However,
unlike the previous example this reconstruction does not know about the \smoothness" of the
function so the reconstruction is jagged, even though it actually �ts the data better. This suggest
that these two pieces of prior information could be combined, and this reconstruction would be
better than either separately.

Repeating this example using both the second derivative constraint and the functional form of
the signal is more di�cult because now there are two regularizes: �1 the regularizer associated with
the functional form, and �3 associated with the second derivative constraint. As in the other exam-
ples, to compute the posterior probability for a pixel, we must set these regularizes. This is done
by computing the joint posterior probability for the regularizes, Eq. (119), and then marginalizing
over either �1 or �3. In Fig. 10 the joint posterior probability for these two regularizes has been
plotted. The dashed contours are the base 10 logarithm of P (�1; �3j�0; D; I). The region enclosed
by the contour labeled 9 contains 99% of the total probability. The region enclosed by the contour
labeled 8 contains 99.9% of the total probability, etc. The solid lines inside of contour 9 is the fully
normalized joint posterior probability.

From this joint posterior probability for �1 and �3, it is possible to compute the posterior prob-
ability for either �1 or �3 by using the sum rule from probability theory. The posterior probability
for �1 is given by

P (�1j�0; D; I) =
Z
d�3P (�1; �3j�0; D; I) (126)
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Figure 8: Deconvolution { Second Derivative Constraint

Fig. 8. In panel (A) the posterior probability for the regularizer �3 is shown. As in previous examples any

value of �3 close to the maximum yields essentially identical deconvolutions. Panel (B) shows the peak value

of each estimated pixel value (solid line) plus or minus one standard deviation (dashed line). The true values

are shown as the plus signs.
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Figure 9: Deconvolution { Functional Form Constraint

Fig. 9. In panel (A) the posterior probability for the regularizer �1 is shown. As in previous examples, any

value of �1 close to the maximum yields essentially identical deconvolutions. Panel (B) shows the peak value

of each estimated pixel value (solid line) plus or minus one standard deviation (dashed line). The true values

are shown as the plus signs.
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Figure 10: The Joint Probability for �1 and �3

Fig. 10. When both constraints are used (second derivative, and functional form) the joint posterior prob-

ability for the regularizer is a function of both �1 and �3. The dashed lines are the base 10 logarithm of

P (�1; �3j�0; D; I). A change of one from the maximum corresponds to including 90% of the total probability.

So e�ectively everything outside of the contour labeled 9 is irrelevant. The closely spaced solid contours

are the fully normalized posterior probability. The region covered by these contours covers 99% of the total

probability.
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Figure 11: Deconvolution { The Estimated Parameters

Fig. 11. From the joint posterior probability for �1 and �3 (Fig. 10), one can easily compute the posterior

probability for each �1, panel (A), and �3, panel (B). Using the maxima from these marginal distributions,

a � standard deviation estimate for the pixel values were computed. The maxima are shown in (C) as the

solid line, the one-standard-deviation error bars are shown as the dashed lines, and the true signal values

are given by the plus signs.
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and the posterior probability for �3 is given by

P (�3j�0; D; I) =

Z
d�1P (�1; �3j�0; D; I): (127)

These two probability density functions have been plotted in Fig 11(A) and (B) respectively. The
peak value for �1 is approximately 0.35 and for �3 it is approximately 0.25. These values were used
to compute the posterior probability for the pixels. The peak values are shown in (C) as the solid
line, the one-standard-deviation error bars are shown as the dashed lines, and the true signal values
are given by the plus signs. Note that this reconstruction has combined the best features of the
two previous examples: The use of information about the functional form causes the reconstruction
to follow the true signal much more closely, while use of the smoothing constraint has suppressed
much of the random 
uctuation.

4 Deconvolution { Generalizations

The results of the preceding calculations can be generalized in a number of ways by allowing more
general types of prior information. When the priors were established for the deconvolution problem,
only one function per type of prior information was allowed. There is no reason why more functions
cannot be allowed, and in many cases the need for them is obvious. For example, suppose f1 (the
functional form) were a cosine, then a second function, a sine, is needed to properly express the
phase of the sinusoid. Additionally, only three pieces of prior information were used: one on the
functional form of the signal, one on its �rst derivative, and one on its second derivative. There
is no reason why one could not have more then three pieces of prior information, and these could
constrain more complicated functions of the pixels than just the �rst and second derivatives.

In this section, the deconvolution results presented in the previous sections will be generalized to
allow for any number of pieces of prior information. This information can specify functional forms
containing any number of amplitudes and functions, and these functions will be allowed to constrain
an arbitrary linear combination of the pixels. The total number of pieces of prior information will
be designated as r. Each piece of prior information will be designated as I1; : : : ; Ir. For information
I�, the constraint will be written

�+1X
i=0

2
4�+1X
j=0

a�ijuj �

m�X
k=1

A�
kf

�
k (ti)

3
52 = �2� (128)

where a�ij is a known matrix of coe�cients that describe how the pixels interact. For example, it
could describe the second-derivative constraint used earlier. The coe�cients A�

k are the amplitudes
or intensities of the signal functions, and they will be considered as unknown, nuisance parameters.
The constraint functions f�k are the analogue of the functions (f1; f2, and f3) used earlier. However,
there are m� of these functions for each of the r constraints. There are a total of

P
m� functions

and amplitudes. Each constraint will have a fractional variance or regularizer associated with it.
These regularizes will be designated as �1; : : : ; �r. Last, note that the sum over discrete times (the
i index) runs from 0 � i � � + 1. So the above constraints are written implicitly to include the
boundary conditions.

Converting the �th constraint into a probability density function for the pixels is straightforward
and results in

P (V j�0; ��; I�; I) / exp

(
�

�20
2�2

m�X
l=1

(A�
l )

2 �
�2�
2�2

�+1X
i=0

2
4�+1X
j=0

a�ijuj �

m�X
k=1

A�
kf

�
k (ti)

3
52); (129)
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where the �rst term expresses the prior information about the amplitudes and the second expresses
the prior information about the pixels. As in the previous examples, this prior may be converted
into a prior with a double sum; this gives

P (V j�0; I�; I) / exp

(
�

�2�
2�2

�X
k=0

�X
l=0

W�
klvkvl

)
; (130)

where

� = � + 1 +
rX

k=1

mk (131)

and (�+ 1) is the total number of unknown generalized pixels vi. Following what was done earlier,
these generalized pixels are de�ned as:

vi �

8>>>>>>>>>>><
>>>>>>>>>>>:

ui if 0 � i � � + 1

A1
i���1 if � + 1 < i � � + 1 +m1

A2
i���1�m1

if � + 1 +m1 < i � � + 1+m1 +m2

...

Ar
i���m1�����mr

if � + 1 +m1 + � � �+mr�1 < i � �:

(132)

Last the matrix W�
kl is de�ned as

W�
kl = b�kl � c�kl + d�kl; (133)

where b�kl, c
�
kl and d

�
kl correspond to the coe�cients of the terms obtained by squaring the exponent,

combining all of the terms and carrying out the sum over i. The matrix b�kl is just the coe�cient
of the �rst term of the square in Eq. (129), and is given by

b
�
kl �

8>>><
>>>:

�+1X
i=0

a�ika
�
il if 0 � k; l � � + 1

0 otherwise:

(134)

Note that in setting up the generalW�
kl matrix, the indices are allowed to take on values 0 � k; l � �,

so in the de�nition of b�kl it was necessary to state explicitly that this term is zero when either k
or l was greater than � + 1. The matrix c�kl corresponds to the coe�cient of the cross term, and is
given by

c�kl �

8>>>>>>>>>>>><
>>>>>>>>>>>>:

�+1X
i=1

a�ikf
�
n (ti)

8>>>>>>>>>><
>>>>>>>>>>:

If k � � + 1 and � + 1 +m1 + � � �+m��1 < l
and l � � + 1 +m1 + � � �+m�

where n = l � � � 1�m1 � � � � �m��1

OR
If l � � + 1 and � + 1 +m1 + � � �+m��1 < k
and k � � + 1 +m1 + � � �+m�

where n = k � � � 1�m1 � � � � �m��1

0 otherwise:

(135)
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The third term is the square plus �rst the prior probability for the amplitudes, and is de�ned as

d�kl �

8>>>>><
>>>>>:

�20
�2�
�kl +

�+1X
i=0

f�n1(ti)f
�
n2(ti)

8>>><
>>>:

if � + 1 +m1 + � � �+m��1 < k; l

and k; l � � + 1 +m1 + � � �+m�

where n1 = k � � � 1�m1 � � � �m��1

and n2 = l� � � 1�m1 � � � �m��1:

0 otherwise

(136)

where �kl is the Kronecker delta function. As was done previously, the individual priors may be
combined to obtain a single prior which expresses all of the prior information. This prior is given
by

P (V j�0; : : : ; �r; I) =
q
�0 � � ���

�
2��2

��+1
exp

(
�

1

2�2

�X
k=0

�X
l=0

Zklvkvl

)
(137)

where

Zkl =
rX

�=1

�2�W
�
kl (138)

and f�0 � � ���g are the eigenvalues of the Zkl matrix.
The mathematics from the three previous sections may now be repeated to obtain a generalized

result. First, the posterior probability for the jth generalized pixel is given by

P (vj j�0; : : : ; �r; �;D; I)/ exp

(
�
Nd2 � 2Djvj + gjjv

2
j � h(vj) � h(vj)

2�2

)
(139)

where Dj was de�ned earlier, Eq. (110),

hl(vj) �
1q
�0l

�X
i=0
i6=j

[Di � gjivj ]eli (l 6= j) (140)

h(vj) � h(vj) �
�X

i=0
i6=j

hi(vj) (141)

and �00 � � ��
0
� are the eigenvalues of the jth cofactor of the gkl matrix. The gkl matrix is de�ned as

gkl � Zkl + Skl (142)

where Skl was de�ned in Eq. (112).
Next, the posterior probability for the jth pixel value, independent of the variance of the noise,

is given by

P (vj j�0; : : : ; �r; D; I)/

"
1�

h(vj) � h(vj) + 2Djvj � gjjv
2
j

Nd2

#� 1+N
2

: (143)

Last, the joint marginal posterior probability for the regularizes is given by

P (�1; : : : ; �rj�0; D; I)/ (�1 � � ��r)
�1

 
�0 � � ���+1
�00 � � ��

0
�

! 1

2
�
1�

h(�1; : : : ; �r) � h(�1; : : : ; �r)

Nd2

��N
2

(144)
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where �00 � � ��
0
� are the eigenvalues of the gjk matrix, Eq. (142),

h(�1; : : : ; �r) � h(�1; : : : ; �r) �
�X

i=0

hi(�1; : : : ; �r)
2 (145)

and

hi(�1; : : : ; �r) =
1q
�0i

�X
j=0

Djeij (146)

where in Eqs. (144{146), the eigenvalues f�00; : : : ; �
0
�g are the eigenvalues of the gjk matrix, Eq. (142),

and eij are its eigenvectors.
Note that care must be taken when interpreting the results of these calculations, because the

notation for the eigenvalues and eigenvectors has not been changed when di�erent matrices were
used. The meaning should remain clear because when each formula is given the matrices being
diagonalized are clearly stated. But just to be clear on this point, when the posterior probability
for the jth pixel is being computed the eigenvalues �00; : : : ; �nu

0 and eigenvectors eij refer to the
jth cofactor of the gjk matrix. However, when the posterior probability for the regularizes is
computed �00 : : :�

0
� refer to the eigenvalues of the gjk matrix (not thejth cofactor) and ejk refer to

its eigenvectors of gjk .

4.1 Estimating The Pixel Values

It is one thing to formally derive a result and quite another for it to be useful. The posterior
probability for the individual pixels given all of the prior information, Eq. (143), is one of these
types of results. While this result will prove useful in examining individual, important, pixels it is
not the way to estimate all of the pixels. Even if one were to compute this posterior probability
density for all of the pixels, it still would not give one an estimated signal; rather it would tell
one what is actually known about the signal values and the uncertainty in those values. What is
actually needed is an estimate of the pixels and the uncertainty in the estimate.

There are many ways to estimate a parameter using probability theory and the estimate of
choice will depend on what one stands to lose if one is wrong. Two di�erent types of estimates
are the maximum of the posterior probability, and mean or expected value of a parameter. In this
calculation, the expected value and peak values are the same, so the pixel estimates will be given
as the mean plus or minus the standard deviation.

The expected value of the jth generalized pixel is given by

hvj j�0; : : : ; �r; �; Ii=
Z
dv0 : : :dv�vjP (v0; : : : ; v�j�0; : : : ; �r; �;D; I) (147)

where the notation hvj j�0; : : : ; �r; �; Ii means the expected value of pixel vj given that �0; : : : ; �r,
and � are known. But note that it is the fully normalized joint probability density function that is
to be used. Consequently, when this calculation is performed the probability density function will
have to be normalized:

hvj j�0; : : : ; �r; �i =
Z

dv0 : : : dv�vj
Normalization

exp

(
�

1

2�2

�X
k=0

�X
l=0

gklvkvl � 2
�X

k=0

Dkvk

)
(148)

where

Normalization =
Z
dv0 : : : dv� exp

(
�

1

2�2

�X
k=0

�X
l=0

gklvkvl � 2
�X

k=0

Dkvk

)
: (149)
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Evaluating the integrals, one obtains

hvj j�0; : : : ; �r; �i =
�X

i=0

eijhiq
�0i

: (150)

Similarly the expected mean-square value of the pixels is given by

hvjvkj�0; : : : ; �r; �i =
Z
dv0 : : :dv�vjvkP (v0; : : : ; v�j�0; : : : ; �r; �;D; I); (151)

and one �nds

hvjvk j�0; : : : ; �r; �i = h�2i
�X

i=0

eijeikq
�0i

: (152)

From which one would make a (mean � standard deviation) estimate of

(vj)est =
�X

i=0

eijhiq
�0i

�

vuuuth�2i �X
i=0

eijeijq
�0i

: (153)

Note that while the individual probability distributions would require one to invert a matrix for
each value of vj ; the (mean � standard deviation) estimate may be done for all of the pixels with
a single matrix inversion.

4.2 Estimating The Noise Level

Before the above result can be used, h�2i must be computed. To compute h�2i, one must evaluate

h�2i =

Z 1

0
d��2P (�j�0; � � � ; �r; D; I)d� (154)

where P (�j�0; � � � ; �r; D; I) is the fully normalized posterior probability for � given the regularizes
and the data. But using the rules of probability theory, this is just the prior probability for � times
the probability for the regularizes given �. So the expectation value may be written as:

h�2i =
Z 1

0
d��2d�P (�jI)P (�1; � � � ; �rj�0; �;D; I): (155)

where

P (�1; � � � ; �rj�0; �;D; I)/ �m1+���+mr�N exp

(
Nd2 � h(�1; : : : ; �r) � h(�1; : : : ; �r)

2�2

)
; (156)

P (�jI) /
1

�
(157)

and h(�1; : : : ; �r) � h(�1; : : : ; �r) is given by Eq. (145). The normalization constant needed to ensure
that the total probability is one is given by

normalization =
Z 1

0
d�P (�jI)P (�1; � � � ; �rj�0; �;D; I): (158)

Making the appropriate substitutions and evaluating the integrals gives

h�2i =
1

N �m1 � � � � �mr

h
Nd2 � h(�1; : : : ; �r) � h(�1; : : : ; �r)

i
(159)
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as the estimated standard deviation for the noise.
At this point in the calculation it would appear that another numerical example is needed

to illustrate these new additional calculations and generalizations. However that is not the case,
because all of the examples given in the text were computed by using these �nal results. That is to
say, all of the computer programs used in the numerical calculations implemented this generalized
calculation. To produce any speci�c example the model functions and the pixel smearing matrices
were changed to produce the desired calculation.

5 Summary And Conclusions

Proceeding through stages, this paper has explored the deconvolution problem in varying degrees of
complexity. In the �rst two sections, the deconvolution problem was simpli�ed to the interpolation
problem. This problem was then explored to see how varying the prior information a�ects the
results of the calculation. These calculations illustrate that the interpolation problem is easily
solved by incorporating prior information into the problem. The more cogent the prior information
the better the reconstructions. However, even with very crude prior information probability theory
does not lie. The interpolations always covered the correct signal at one and sometimes two standard
deviations.

After obtaining an understanding of the interpolation problem, the calculation was then gener-
alized to include the convolution. Including the convolution did not actually change the results from
the �rst two sections, it only generalized them. The e�ect of prior information was then explored
again to show how including di�erent types of prior information a�ects the results. Again the
results were essentially identical to what was found in the �rst two sections: Including more cogent
prior information helps the deconvolution problem; but again when only limited prior information
is available, the results obtained overlapped the correct result at one and sometimes two standard
deviations.

Last, the entire formalism was generalized to include much more arbitrary types of prior in-
formation. This formalism, given in the preceding section, is the only version of the calculation
programmed on the computer. Every example given in this work was essentially an example of the
power of the general calculation presented in the previous section.

This work represents at best, a �rst initial exploration of the deconvolution problem. Much
remains to be done. For example this work did not address the use of priors outside of the class
of general Gaussian priors. While this class is wide, it does not include such priors as the entropy
prior. An interesting problem would be to try to combine the best aspects of both the entropy prior
and the Gaussian priors used in this calculation. Indeed there is some evidence based on work in
other �elds that this could be very productive, [28].

Last, this work suggests how to use probability theory to solve other types of outstanding
problems. In particular relatively straightforward modi�cation to this calculation will allow inho-
mogeneous linear di�erential equations with either boundary value, initial value, or any other type
of asymptotic condition to be solved. Additionally, using the techniques developed in this paper,
the moment problem, i.e., inferring a function from a �nite number of its moments, should now be
a solvable problem. The only change in this calculation is that the limit as the noise variance goes
to zero is needed to solve this problem.

If there is a single major accomplishment for this paper, it was to demonstrate that the results
one obtains depends critically on the prior information put into the problem. To put it bluntly, there
is no such thing as a single best deconvolution. Every result from a Bayesian calculation is only as
good as the prior information that goes into it. However, every Bayesian calculation carries with it

44



a measure of the uncertainty in the calculation. While some priors will give poor reconstructions,
probability theory warns one of this by making the uncertainty in the estimates large (large enough
to cover the correct value of the signal). So even the results from very uninformative priors still
give meaningful reconstructions.
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