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Abstract. In NMR data analysis a great deal of prior information is available. We
know, in general terms, what characteristic signal will be received, that for quadrature
measurements it will be the same in both channels and that the noise is potentially
correlated. We have shown in previous work 1], {2] that when prior information is
incorporated into the analysis of data, the frequencies, decay rates, and amplitudes
may be estimated much more precisely than by using the discrete Fourier transform
directly. Here we extend the Bayesian analysis to include the quadrature nature of the
data and noise correlations. We then show that in typical NMR data the frequencies
and decay rates may be estimated with a precision several orders of magnitude better
than directly from the discrete Fourier transform.

Introduction

In NMR, theory tells us that the free induction decay time series must be sinusoidal
with exponential or Gaussian decay. When this information is incorporated into
the spectral estimation problem, one may estimate the frequencies and decay rates
much more accurately than directly from a discrete Fourier transform of the data [1],
[2]. More importantly this information allows one to separate frequencies and decay
rates that are too close for one to resolve using a discrete Fourier transform. The
initial work [1] did not incorporate all of the information we possessed about NMR
signals. We used the functional form of the signal, but we utilized the data as if two
distinct measurements were available having the same frequencies and decay rates,
but different amplitudes and phases. This gave v/2 improvement in the parameter
estimates. However, we have more information; in particular, we know that the signal
in the second channel is 90° out of phase with that in the first channel. Also, we
know that the noise is potentially correlated, and that the phases of all the sinusoids
are typically the same. When more information is incorporated into a probability



calculation, we expect that information to improve the estimates of the parameters.
In this paper we specialize the Bayesian calculation to include quadrature, noise
correlations, and phase coherences.

The General Model Equation

The basic model we are considering is: given a quadrature detected data set (i.e., two
data sets collected with a 90° phase difference), then the real data may be modeled
as

dr(ti) = fr(t:) + n(a,0)

where n(c,0) 1s a Gaussian noise component of mean zero and standard deviation
o, fr(t) is a model of the real signal, and the quadrature or imaginary data may be
modeled as

dr(t;) = fi(t:) + n(o,0).

The basic problem we would like to solve is: “what are the best estimates of the
parameters (frequencies and decay rates) hidden in fp and f; that one can make
from the data and the prior information?” We will solve this problem using Bayesian
probability theory and apply the calculation to several examples.

We write the model equations fr(t) and fr(t) as a sum over functions G and [
such that

fult) = L BGi({wh ) and fi(0) = X BiF({w).0 )

where m is the total number of model functions, B; is the amplitude of the jih model
function, and G;({w},t) and F;({w},t) are typically sinusoids with either exponential
or Gaussian decay. The model functions F; and G are functions of a continuous
variable time ¢; however, the data have been sampled at discrete times {¢1,---,in}.
Additionally, the models are functions of other continuous parameters, which we
collectively label {w}. These parameters are frequencies, decay rates or any other
parameters which could be needed to model the data, for example the phase if it is
the same on all of the sinusoids. Although the amplitudes {B} are of substantial
interest, for the purposes of analyzing the data, we wish to formulate the problem
independently of these parameters to see what probability theory can tell us about
the frequencies and decay rates. The quadrature information has been incorporated
by assuming the amplitudes B; are the same in both channel.

We would like to compute the posterior probability of the frequencies and decay
rates, given the data D and the prior information I. This requires us to obtain two
terms: the direct probability of the data and the prior probability of the parame-
ters. We will compute the direct probability of the data first. Making the standard



assumptions about the noise, the direct probability of the data is:
P(DI{B}a {w}: O',P,I) = (271'0'2)_}\7(1 — pz)_
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where p is the correlation coeflicient — see Jeffreys [3] for a discussion of correlation,
and [2], [4] for a discussion of when a Gaussian should be used to represent the noise.
The symbol I in P(D|{B},{w},0,p,I) is there as a reminder that all probability
distributions are computed based on our prior information /. Now substituting model
Eq. (1) we have the direct probability of the data given the parameters:

P(Dl{w},{B},0.p, 1) = (2702 ™N(1 — p*)~ % exp {"ﬁm%‘;“)‘}
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and () means the sum over the discrete times: dy - Fy = Y., dr(#;) F3(t;).

Bayes’ theorem tells us that the posterior probability of the nonlinear {w} pa-
rameters, independently of the amplitudes, given the data and our prior information
is

P({w},0,0|D,1) O<fd{B}P({B}s{w},a,pII)P(D!{B},{w},aap,f),

where P({ B}, {w},0,p|D,I) is the posterior probability of the parameters, the direct
probability of the data is P{D|{B}, {w},c,p, 1), and P({B},{w},o,p|l) represents
what was known about these parameters before we took the data and is called a
prior probability. In this problem we assume that the data determine the parameters
much more accurately than our prior information. Therefore, we assign a broad
uninformative prior to the parameters: we use a uniform prior for the amplitudes and
a Jeflreys prior for the variance.
Introducing the transformation

n
Fjekj

Iy = :




and . .
dBy - -dB,, = A\ %+ An?dA; - dA,

where e, is the kth component of the jth eigenvector of the interaction matrix

gik = Z G;(t:)Gi(te) ~ p(GFy + GpFy) + Fi(1:) Fr(t:) (2)
and A, is the jth eigenvalue, then the posterior probability of the parameters becomes

P({W},O’,pID,I) X 0'_2N(1 — pz)_%l.)\l —5/ dA1 dA Chp{ "2";(1;62_;5‘5}

where
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and

hi({wl,p) =dr- Rj — p(dr - I; + dp - By) + dp - 1.
After completing the square in @' and performing the m integrals, we have
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If the variance of the noise 0? and the correlatmn coefficient p are known, then the
problem is completed. The posterior probability of the frequencies and decay rates
conditional on the data and our assumed knowledge of o and p is

m

—i -3 mh?
2
P({w}lo,p, D, T) o< Ap oo Am® exp m . (4)
But if & is not known, then it too becomes a nuisance parameter to be removed by
integration. Multiplying Eq. (3) by a Jeffreys prior and integrating with respect to o,
we obtain the posterior probability of the frequencies, decay rates, and the correlation
coeflicient p

. m~2N
2de-d1—§—mh?] 2
dp-dr+d; dp

(5)

P({w}:plD;I) X )\1_% )\;%(1 - ‘pz)'Nmzﬂ {1 —

where A2 is a sufficient statistic for inferences about the {w} parameters. Equation {5)
is an exact result and does not depend on uniform sampling nor does it depend on
the models being sinusoidal. Any quadrature data set that can be modeled by Eq. (1)
can be used in these equations.



The Single Stationary Harmonic Frequency

What is to be gained from the use of Eq. (4) or (5) compared to a discrete Fourier
transform of the data? The answer to this question is easily demonstrated by in-
vestigating one of the simplest quadrature spectral estimation problems: the single
stationary harmonic frequency. Suppose we take

fr(t) = By coswt + Bysinwt
as the model for the signal in the real channel and
fr(#) = By sinwt ~ By cos wit

as the model for the signal in the imaginary channel. If the noise is uncorrelated, ¢.e.,
p = 0, the interaction matrix, Eq. (2), becomes

N 0
gjk=(0 N)'

The ; and I; functions are given by

cos wi sinwt sinwt cos wt

=L R=22
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The sufficient statistic £2 is given by

le
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N
Crlw)= Ry -dr = Z i) cos wt;
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Sp(w) = By -dp = ZdR(t sin wi;

x/_ =

are the cosine and sine transforms of the real data, and Cr{w) and S;(w) are the
transforms for the imaginary data. The posterior probability of a stationary harmonic
frequency w, given the variance of the noise o and assuming the noise is uncorrelated,

P(wlo, D, I) o exp { [Cr(w) + Sf(w)lj ;a{fa(w) — Cy(w))? } |




How does this compare to a discrete Fourier transform of the data? 1f we assume
the data are the real and imaginary parts of a complex data set, then

d(t;) = dp(t;) + idi(ts).

Because
e = coswt — 1§ sinwt,

the squared magnitude of the discrete Fourier transform may be written

; [dr(ty) + idr(ty)] e ™%| = [Cr(w) + SH(w)] + [Sr(w) — Cr{w)]*.

Up to the constant factor 1/2N the sufficient statistic A2 is the squared magnitude
of a discrete Fourier transform of the complex data. Therefore, the discrete Fourier
transform is essentially the natural logarithm of the posterior probability of a sta-
tionary harmonic frequency, given the variance of the noise o?, assuming the noise is
uncorrelated, and assuming the channels are exactly 90° out of phase.

The implications of this are quite profound, because it means that only the highest
peak in a discrete Fourier transform is of any importance for the estimation of a single
stationary frequency, and then it is only the region around the maximum that is of
importance. Moreover, the discrete Fourier transform will always interpret the data
in terms of a single stationary harmonic frequency. If the data does not contain
a single stationary harmonic frequency, or even if the data contain more than one
stationary frequency, the discrete Fourier transform may give misleading or even
incorrect results when compared to other more complex models. This is not because
the discrete Fourier transform is wrong, but because it is answering what we should
regard as the wrong question.

If we know that the signal consists of a single stationary harmonic frequency, how
accurately can a frequency be estimated? We will assume that the data contain a
single stationary sinusoid with no noise. Thus the accuracy estimates we derive will
be optimistic in the sense that in real data, with a given noise variance o%, one would
always make slightly worse frequency estimates than the ones we will derive. We take

dp(t) = Beost; and  di(t;) = Bsindt;

as the signal in the real and imaginary channels, where B is the true amplitude of the
sinusoid and & is the true frequency. We have set the phase of this sinusoid to zero. It
will be obvious at the end of the calculation that the result for an arbitrarily phased
sinusoid may be obtained by the replacement Bt B’f + }3’§ For uniformly sampled
data we may take t; to be integer or half integer, i.e., t; = {-T,-T+1,---,T} and



2T + 1 = N. The sufficient statistic A2 is
2
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o (6)
B? |sin (o —-w)
2N

— 1 [,
ht = [ > " B(cos @t; cos wi; + sin &t sinwi;)

%

sin 2(& — w)

where we have explicitly performed the sum and have ignored terms of order one
compared to N.

To estimate the accuracy of the frequency, we Taylor expand A? in posterior prob-
ability

h?
Plw|e, D, I} o« exp {;7_2_}

around the maximum, and then make the {mean) # (standard deviation} approxima-
tion. Around the maximum, the first derivative of h? is zero, and the second is given

by )
*h? N BIN®

dw? 12
The Gaussian approximation to the posterior probability density is

, 1 .
A 2 A73
P(w|o,D,I) ~ ( ) exp{ By (Co—w)z} ,
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from which we estimate the frequency to be

. o 12
(w)est = W |‘E‘|\/ Rk

2 T 12
— i ——— e II 3
(Hest =/ s BITVN 7

where T' is now the total sampling time in seconds. The accuracy of the frequency
estimate depends on the signal-to-noise ratio of the data, on the VN, and on the
total sampling time 7. The better the data, the better the estimate. If we double the
number of data in the given sampling time we obtain the standard v/2 improvement.
However, if we sample two times longer, we pick up a factor of 2 from sampling
longer and a factor of +/2 from taking two times more data. Clearly for stationary
frequencies taking data for a long time is the preferred way to sample the data.

In many NMR applications the discrete Fourier transform is taken directly as a
frequency estimator. The accuracy is estimated from the full-width-at-half-maximum
of the peak in the discrete Fourier transform. For the case just given, the squared

or in Hertz



magnitude of the discrete Fourier transform of the data (up to a constant) is given
by Eq. (6). This has dropped to half its maximum value when the argument of the
sine function has dropped to 7/4:

NIA |_7r
2w wm4.

Thus for the discrete Fourier transform we find that the frequency estimate, in Hertz,
is )
(Plest-dft = f & 7= Hz
which neither depends on the magnitude of the signal nor the variance of noise o2
Suppose we collect data for 1 second, with AT = 0.001 seconds, collecting N =
1000 data values, and suppose we have RMS signal-to-noise ratio of B/v20 = 1.
From the discrete Fourier transform we estimate the frequency to be

(Fest.dft = f £ 0.25 Hertz,
and the Bayesian estimate is
(f)est = le: 0.012 Hertz.

With signal-to-noise ratio of one, the Bayesian result is about 20 times better than
the result from the discrete Fourier transform. If the signal-to-noise ratio were more
typical of an NMR experiment, for example 100, then the Bayesian estimate would
be more than three orders of magnitude better! Thus the probability analysis can
estimate the frequency several orders of magnitude more precisely than a discrete
Fourier transform directly. But this was in noiseless data. In practice, for frequency
estimation, these procedures work at their theoretical best. However, the same cannot
be said for other types of model functions. The reason frequency estimation is so
accurate has to do with an interaction between the noise and the model functions.
The oscillatory model functions and the noise tend to average to zero. When one
computes the sufficient statistic, there is a sum of the model function times the data.
Since the model and the noise are summing to zero separately, the sum of the product
between the model and the noise tends to zero. This insures the projection of the
model onto the noise is small compared to the projection of the model onto the signal,
and the accuracy of the estimates are near the theoretical best. If the noise or the
model did not average to zero, the accuracy estimates would be much worse.

The Single Frequency with Exponential Decay

In NMR the time series is typically the result of a complex chain of events: a sample
is placed in a high magnetic field, and the nuclear spins are “excited” using a radio
transnmutter. These spins are then detected as they relax back to equilibrium. Using



an RF antenna, the signal is amplified, split, mixed with a reference oscillator (a sine
or cosine) oscillating with a frequency near the natural resonance of the sample, and
low-pass filtered. The beats between the reference oscillator and the sample resonance
are what is digitized and recorded. Because the signal in the two channels originated
in the same physical event there is reason to expect the noise to be correlated. To
give an understanding of what noise correlation can do for estimating the parameters
we give a second example. We will use simulated data with noise correlations.

The data used in this example were generated from the following equations:

fr{t:) = 100 cos(0.3¢; + 1) exp {—0.01¢;},

Fr(t;) = 100sin(0.3¢; + 1) exp {—0.011,} .

To generate the data we first generated the signal from the above equations and then
generated the noise. We generated the noise for the real channel from a Gaussian
distributed random number generator with unit variance. To generate the noise for
the imaginary channel we generated a second random number with unit variance and
then added the noise from the real channel to this second random number. This was
divided by v/2 and then used as the noise in the imaginary channel. The noise in the
two channels is, thus, slightly correlated.

The data and the discrete Fourier transform are displayed in Fig. 1. The data
resemble an NMR signal which rapidly decays. There are N = 512 data values, and
the signal-to-noise ratio is approximately 50. The discrete Fourier transform has a
peak in the correct vicinity of the frequency. However, the width of the discrete
Fourier transform is indicative of the decay rate, not the accuracy of the frequency
estimate.

We now apply the results of this calculation to the data. The model we use is

fr(t) = By coswitexp{—at} + By sinwtexp{—at}
for the real channel and
fr(t) = Bysinwtexp{—at} — By coswtexp{—at}

for the imaginary channel. After integrating out the amplitudes and variance of
the noise, there are three remaining parameters to be estimated from the data: the
frequency w, the decay rate o, and the correlation coefficient p. We present the result
of the calculation as three contour plots. First we plot the base 10 logarithm of the
posterior probability of the frequency and decay rate while holding the correlation
coefficient at its correct value. This is displayed in Fig. 2. We can see from this plot
that there is a very sharp peak in the parameter space around the true value of the
parameters. The normalization on this figure is irrelevant because of an interesting
result, first noted by Jaynes {5]. If the contour lines are in increments of 1 (for
example if the maximum posterior probability density were 100 and the contours he



Figure 1: The Computer Simulated Data and the Discrete Fourier Transform

= RERL CHANNEL o IMAGINARY CHANNEL
2 8
T i TRE:S
. R w1
sE ( =
o o
&5 05
S8 | 2@
= r\; ARl [ o ™o
2 _J
< s
o & =
L o
ERR Iy
b T
3 2
%E i T col\]; H F I
1.00 128.75 256.50 384.25 512.00 1.00 128.75 256.50 3684.25 012,00
TIME TIME
BASE 10 LOGARITHM OF THE POSTERIOR PROBABILITY
! OF A SINGLE HARMGNIC FREQUENCY
]
(G}
>
o
S8
0
a
e
o
&
G o
o o
o™
=
[mn]
. i f f 7 i f i
0.20 0.22 0.24 .28 0.28 0.30 D.32 0.34 0.36 0.38 0.40

ANGULAR FREQUENCY

This computer simulated data (A) contain a single frequency which rapidly decays. The signal-
to-noise ratio in these data is approximately 50. Now the discrete Fourier transform indicates the
presence of a frequency in the right location. However, the width is indicative of the decay rate,
not the accuracy of the estimate. Additionally, the discrete Fourier transform knows nothing of the

noise correlations.



Figure 2: Log Posterior Probability - Frequency vs. Decay Rate
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Figure 3: Log Posterior Probability - Frequency vs. Correlation Coeflicient
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labeled 99, 98, etc.), then for a 2D contour plot the first contour line containg 90%
of the posterior probability, the second contour line contains 99% of the posterior
probability, etc. Therefore, Fig. 2 represents an incredibly sharply peaked posterior

plot, Fig. 3, is the base 10 logarithm of the posterior probability of 5 frequency and
the correlation coefficient given the true decay rate. Again there is a very sharp peak.
The probability enclosed by the highest contour is approximately one; however, it
would require only 20 nines to write it out. The third contour plot, Fig. 4, is of the

Conclusions

In NMR a great deal of prior information is available about the time serjes. When
this information is incorporated into the analysis of the data, the frequencies, decay
rates, and amplitudes may be estimated severa] orders of magnitude better than by



direct use of the discrete Fourier transform. Additionally, if the noise is correlated,
substantial improvement in the estimation of the amplitudes, frequencies, and decay
rates 1s possible.
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