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LAPLACE TRANSFORMS
-Fi;gg Lecture

"

Textbook: Gardner and Barnes, "Transients in Linear Systems
Wiley, 1942
Other books by Berg, Bush, Cohen, Carson, Kurtz and Corcoran,

Skilling, Stephens, and Churchill may be consulted.

Aim of course: to provide a technique for solving practical

transient problems.

The classical method will be studied first, using as an ex-
ample a series-peaked video amplifier stage. This problem will
later be solved operationally. We assume a "unit step" current
applied to the interstage coupling clircuit, defined by:
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The circuit and terminology are as shown below:
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The problem will be solved when we have found e (t). The

standard classical procedure would be to set up a differential

equation in which e (t) is the unknown and i (t) the driving func-

Eyen
tion. HDW&V&I,AiH this relatively simble problem, the driving funec-

tion is not differentiable, and the procedure described would fail.




Hence, even in this case we must use an artifice in order to arrive
at e {t),which consists pf finding i2 (t} first, and then using the
solution of the sub-problem to find e (t). The fundamental equations

of the circuit may be written as follows:

i =7 - 7 - de
b L= s = C s - )
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Riy +L ¢ = (%) (2)
In order to eliminate i, we differentiate (2):
de Al{& il;
— = L o7 = U-7s
oSt g4t ( )

Rearranging this eguation, we have for the differential eguation

giving i2:
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This may be put into & standard form by substituting
- K& 2 s
AR = L ¥ SN Lc (7)
The dlfferential equatiocn is then :
& 24 x 13 AP,

The solution of which is:
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It is seen that the condition for oscillations is:
a
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The constants C] and C, may be evaluated from the initial conditions:
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We have then:

Cr+c.1—+7:o = o /J?)
& @a=gE) + Ca(a-Vay) = o

from which we have!
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The voltage e (t} may then be found from 12
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Combining terms, we have:
4 - ¥
e(t) = Ry, [,_ Le-+-He (e+8)C »
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F = \a~ Q_;L Jy:_ -k —l/é.‘_;_.){.) .

This is the solution of the problem. There are a few general-

where

izations that may be made about the classical method. It is found
that in all networks in which the componentsg ére linear and inde-
pendent of time, the differential equations are of the type known

as linear equations with constant coefficients. Their solution
consists of the complementary function, which 1s the general solution
of the homogeneous differential equation cbtained by putting the
driving-force equal to zero, and a particular integral which depends
on the form of the driving-force function. These are known to the

engineer as the transient and steady-state responses respectively.



The transient part of the solution contains a sufficient number of
arvitrary constants to enable it to meet all the prescribed initial
conditions, The functions appearing in the transient are always
exponential. If these exponentials are complex they always occur
in complex conjugate pairs, so that thelr sum represents a real,
exponentially damped oscillation., The difference between two

real exponential fumnctions occurs often and is called a surge funetion

It has the form illustrated below:

-at gt
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The two modes for a simple LEC c¢ircuit vary with increasing losses

a8 shown below: Pt
' Complex r flone " , I’ad;c =e
Q=7

With no losses, ( Q& the modes are at #yw,, and re-
t a 4 si ] Jwe t ‘3_"’“)°t
rresent an undamped sine wave, since g re = 3cC we T .
As losses increase, the modes move slong the arc of a circle, re-
presenting an exponentially decaying oscillation of lower frequency
than & . OCritical damping occurs when the modes coincide at

R = “ob - ,‘L\j-é‘- i , ard at this point there is only 8 single ex-

ponential term :-Jdot . 4 the losses increase further, the modes



separate, and move along the real axis, where at infinite loss one
approaches (‘iéﬁ ) snd the other approaches zero,

The distinetion between transient and steady-state 1s very
great in the classical method of solution, but it is & mathematical

rather than physical distinction, which is lost in the operational

i

The Heaviside Operatioconal Method

In the Heaviside method, we obtain an operational equation from

A iy ¢
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the differential equation by substituting f= A ¢ T F :ﬁ )J[",

) tpt .
Lo 0
A \[q ‘f( )t ’ L. . This transforms an

integro-differential equation into an algebﬁic one. If this is
solved for the unknown treating p as an algebraic quantity, the re-
sult is a symbolic solution involving p and the driving function.
This can be converted into a real time function if we know how to
interpret the operational equations; we will now consider how this
is done. The fundamental type of driving function is the unit step

which is defined by: o t 40
. )
7‘ {/ a C‘DO}

Heaviside found, by working backwards from known soluticns of simple
differential equations, that the following interpretations of

operational expressions could be nade:

T

t

| oo 27

F7'fa“‘=t7 N AN L
Ow

o -



and, in general, we have:

/ t " ,
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It should be clearly understocd what this type of equation
ﬁeans; it is not wvalid to cancel out‘Uua7 sign, because the left
hand side of the equation is not a product, but rather represents
an operation on 7. The right hend side, however, is an ordinary
product, and simply means that the time funetion is cut off before
t equals O, which amounts to assuming zero for all initial con-
ditions. We see that if some function o® F(P) is given, the result
of operating with this function on the unit step 7 may be found
by expanding ¥ (P) in a power series in_E§ y after which each term
may be interpreted according to equation (11). Heaviside called
this process "algebrizing". By means of it, an answer in the form
of a power series in t can be obtained Tor any ¥ (P) that is analytic
in-Eé . Some of these power series are recognized as well-known
functions; in this way the fecllowing identities have been established:

L, 1 2 .

1= @3;%7 =cecat ]

fe —at s (/"L)
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e see that a time function can also be obtained in the form
of & series of exponential terms if we expaznd ¥ (F) into partial
fractions of the form éii and use the appropriate formula above.
The general rule for this process is called the Heaviside eXxpansion

theorem. If F ({P) is expressible as the ratio AK?)/(b(f) of two

rational algebraic polynomials, we have:

~



M _ N (o) . . N (Fx) eff’kl‘.’ 7 03)
0(r) D (2) £ D'(ex)

=1

where the?K are the h roots of the equation D(F) =9 , ana
« D(P)

[fCYK) is the derivative 7 evaluated at f£=F .
Tt is seen that the different "modes" of network response appear
as different solutions of D(P) =0 , which ensures that all com-
piex roots will appear in complex conjugate pairs.

if the time function operated on by F (P} is ﬁot the unit
step, 1t is usually easiest to express that time function in terms
of a function G (P} operating on the unit step, so that the pro-

duct F {P) G (P) then becomes the function to interpret, For

example,
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Second_ Lecture

The last lecture covered classical and Heaviside methods of
solving differential equations.

The reason for succeés of Heaviside method was that 1t re-
duced the differential equation to an algebraic one which couldt
be solved easily. This was because we put g = Ji;_’- gl ;’—:\ﬁ Y.
All this was formalism, and its justification depended upon tﬁl?
possibility of interpreting the result of the algebralc solution,
which interpretatidn could usually, but not always be made.

There is, however, another method of solution which has the

same property of reducing the differential equation to an algebraic

one, in a very similar way. The laplace trangform is defined by:
: Lo
_ st
Ifsto] = |foe" e = Fes) 0
]

It defines a functional transformation, and relates a time
function F (t) to a funotion of the complex variable S which for

the moment has no physical significance. Examples are:
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Notice the great similarity - there is one more power of P

than of S in each case, This is true in general, and is in fact
the relation by means of which mathematicians have been able to Jjust-
ify the Heavigside rules for the solution of differential equations.

The operations of differentiation and integratioh are analyzed as

follows: Wéfd )

v
] _ OPF(t) -Sf— ’ L(:e-Sf'
L] = at A8 wi=-se Sk
Al tof f(E)
] L
st _ , YERI49
= f(t)e ’ /o '*ff(f).Se Szf
= ~€(0) +5fF(t)c-Sto«'f'
d

S F(s) ~£(0) (% £06) 4a coZoiun ) (6)

I[,[;(wtj - I[F(_”(t)] E S—I[F(S) + F('q(a)] (7)

The initial conditions ®wwm are introduced automatically. It

is seen that the correspondence with the Heaviside method is kept
here, differentiation corresponding to multiplication of the time
function by P in tné Feaviside system, and to multiplication of
the complex function by S in the Laplace method.

The reduction of the differential equation to an algebraic



one 1s then done as follows:
d1 . ;j' ‘
—+ (K1 —_ 17 = (¢
Lo+ ®U+z]idt =elt) )
Taking the:thransform of both sides, we have:

I}:Lﬁ‘i Ri+dfue] = [[e@] = £¢5) (7)

r, since thelﬁ_transform is linear:

Iil +(Y\Iz(t) +-I[f14f} = £(5) (/?)

Using our formulas (6} and (7), we have:

L[SI(S) - 7o ] +&I(S)+C—;— [I(s)+;—.] = £(5) ()

 This is now reduced to an algebraic ecuation in 5, Note that
the initisl conditions give the correct quantities to specify,
namely the initial current iw an L, and the initial charge on a
¢, Quantities such as the initial voltage on L are not per~
missible ini%ial conditions, because they can be changed instan-
taneously. <The Heaviside method automatically assumes zero initial
conditions, because the operational interpretation of f_’ z o(* )],!t
requires the (—O) as the lower limit, in order that P and 1/F be
exactly inverse operations, whereas the Laplaée transforms have
(#0) as the lower limit,

It we solve (11) for I (38), we have:

ECs) + 17, - B (12

TCs) = ) 1o = )
LS +R + 1+

The denominator of (12) looks very ruch like the standard

expression for the steady-state impedance, if we replace S by J .
It ecan be shown that this is true in general; in other words:

The relsation between the transforms I (3) and E(S) is

/0



(L) I

identical with the relation between the 4.C, vectors I and E for
JW is replaced by S

the steady-state case, if .

This rule is of great convenience, and enables us to by-
pass the differential equation. stage unless there is scme
difficulty with wme initial conditions. If initial conditions

ere lgnored, the solution assumes them to be zero.
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Third Lecture

We may apply this rule to the series-peaked video amplifier

circuit discussed in lecture one, 2s follows:

I() [(&*L5) o5 z(s) [e+es] ')
Ty L&rLsd

ECs) = -
LS+ & j+RCS +LECST
The current applied was a unit step of amplitude io, as <9 T(5) = -253—' ,
and; .
5) = J
LL5) s(1+RCS+LCS?)
Gardner ¥ Barnes
Consulting the/\tables, we Tind pair 1,109 to be closest, but
it requires factoring the denominator of the equation:
N
£ECS) = = >R Ly (3
C S(S + L s +L-_E )
This requires solving the following equation for S:
a R )
- —~ =0
-4 2 M.ﬁ-?ac)
The quadratic formula is used, - 2 .
The roots are then:
S o (7)
sC TV~ Ic
We then can identify:
L, = %—
®- I R
X oz £ NG L - = ~+ 0
J L Ye L . (5)

The soclution is then:

' L -7 AE
e(t) = E[..E“-"- + Rom % e'“t + « c J
C (XY (X -7) v (7 -x)
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' & &
:l‘i[ @ om0 (& e)r & -S46 _(5‘%-0’)*]
c (L —_ ¢ + . e

= 2e(s% +0) * (-0(& -¢)



This reduces to:

{ ﬂ(a%*tf)t
) e

e(t) = (?\'Ld[!*’“(az,c? FRC ™

_ (7)
K F)t
SR )T ]

This may be rearranged in the more symmetrical form:
&
. FLEF +@) T
elt) =R, II-—"(J_ JLJ’ - ) (,1 )
T=F)
1 g oigy -(z™e) ¢
‘f( TG TR Y

which agrees with the result arrived at in the classical method

in lecture one,
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Fourth Lecture
Correspondence between Laplace and Fourier transforms may

be seen by writing:

oo o C?j“-’"
$) = T A '
Fe Flt)e . FO= 57 Ry el ()
then put C-7oo
el M +joo’ o= o
“ Lt ~ ‘W
F(s)y= F(Jw) = jf(?)c-j S = F(t)q(t)e_-j of T (-?)
o ~ o
{ er w ‘wl
- — Wy L TWt ! Ly Tw
FU) = 55 [FOD e’ a0 = s [ R e (3)
C= Joo -0

The last fofmulae are called Fourler transforms. The ex-
tension of the lower limit to(—gQﬁn the direct transform is made
easily if F(¥)so, £« 0 |, This is the main difference betwsen
the Fourier snd Laplace transforms, and we will investigate
further to see just how the complex inversicn formula leads to
time functions vanishing before t= o .

As a tool useful for later work, let us derive a preliminary

result. Consider the funection

S t v (wt
w _ U SJI‘!C J

= = hazﬁs_‘ as & increases without limit:
_/\/7\ m
=~ SN S A
t

The central peak becomes higher and sharper, and the "cycles"



crowd together as & increases. However, the area under the curve

remains finite and independent of &, since:

Oiaén w7 J
- (¢
£ - At =T )

e
Now if this function is multiplied by a function F () and in-

tegrated,'the rapidly alternating plus and minus values of (sin @t)/t
will cancel out contributions except in the neighbbrhood of t equals
0, where one infinite loop is not cancelled out by another one. -
This means that it is oniy values of F {t) near to t equals 0 that
can contribute appreciably to the integral. In the limit, the

integral is ziven simply by the value of F (0) multiplied by the

area under the oscillating curve, which isT:

/. F(t) sigi)dt_ = T F(2) £)

W oo

g

-
Generalizing slightly by shifting the origin of the oscillating

curve, we have a formula :

g i * can W{(E ~1h) _ (‘)
Some ) SO o At = F(W
. . ﬁ,; ) Ft: ) —a‘;WCf"“()Jq F({_‘)
v r—— 75 fon
W}%%Mﬁ td"‘bf”( : o oo T - (t ~u) ((a..‘
- /

Now we return to the Laplace formulae:

v s i’ (MILWMMZ/M

-5t -5
FOY= [ e wr = | Fll)e f
of
a c by gdf)  07)
(,'i-):o-a er'w
_f.. F st ! st P
FOE) - any (s)e As = Lo .;:‘.-ﬁ-‘; FG)e  ofs (_)
w—» oo

Coyn C-7



If we substitute into (8), we have:

Ctjw
F(t) = L fo ”‘o@sff(q)c”(ozq (?)
UQ-FO‘ o
C-

The order of 1ntegratlonynay be reversed, giving:
Crjw

sCt- u)
F(O o arr:/ ff(u)dqf {N)
-7 .

Evaluating the inner 1ntegra1 we have:

crjw - ) s(t-u) JCrjw
¢ -4 e . . .
f s{ 4 = S— = eC(t H)[c Jwlt-y) -Fuw(s -u)

e =
C.-fu) (t Q) C-jz.d ('t-l-() Te -
. (t-4) n w{(E-4)
T J7 e "—(?—q-)-——- (12)

We then have:
) Y ) e ot -w) |
. N Clt~d) e - )
FIE)Z g T OF(vt)e g o« (28)

This is seen to be the same as (6a) except for the limits of
integration. TFrom the discussion preceding (6a) it is clear that
negative values of t must lead to the value F (t) equals 0, since
contributions to the integral arise only when t and 4 "cross over"
T+ is seen that the extra "converging power™ of the Laplace
transform due to the factor e~ 7t is obtained at the expense of
cutting off all time functions before t equals 0. If we wish to
keep ¥ (t) for all values of time, we cannot use the term G?-rt )
but must put S equals j &, as 1n equations {2) and (3), which are
standard Fourier transforms. In general, whatever lower limit was
taken in the integral defining the direet transformation is the

time btefore which the inversion integral gives F’(t) equals C,

We may also see the above result from the theory of residues.,



(4) 17

The Cauchy residue theorem is:

/ F(z) (13)
Res (&) = 777 fz*a. L2 = £(a)
where the integral encloses the point Z=a | and f(Z) has no

pole at 24 « The loop integral around any region is then
equal to ami o« 2 residues of all poles enclosed in the regicn.
For >0 , we can define a loop enclosing all poles of the

function F (S) as below:

As the integral around the semi-
circle vanishes for R-» % , the
integral along the straight line
is equal to amy 22?5&4d .

For ¢ <0 , the factor & be-

comes divergent on the semicircle,
and we have to complete the lcop

by a semicircle to the right of the

straight line path. Since the new

N loop encloses no poles, we have

&‘-»..._ F(ﬂ:o ﬁ.gv t L0,
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Fifth Lecture

Development of Fourier Integral from Fourier Series

The usual form of a Fourier series ig:

P o _
¥ . 7Y
F(t) = 9——:-;- Zan‘,.q.nuJof + E‘&"% hw, & ( )
n=) L B-3
where
7

a, =4 | FDcmnwt 2w ) .g_ L 7 .

nT T - ° ° 3 n F(t) =l it J(w,f) (’5)

-7
This can be put into the complex form by noting that the sine and

cosine terms of any freguency mey be combined as follows:

Ry cant + (., winw,t = C e el + C., e s7nwel ue)

13

where ch j(‘(h—jﬂ-q)

C-h=f(ah+7}ah) = C, Z 7)

We then have:
= fh&}pt
t) =
h:-v‘

r _ihpt
C,, = 5%, f(t) e 7 J(wdf)

The similarity between these and the Fourier transform
formulae is evident. We will not go through the 1limit process
because it is too difficult, but it can be seen that a change of

variable results in the formula



(2) 4%

o
tale g
— F - Tnuyt
Y 7 (t) e AT,
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L

If now we let w,-»0 , the limits on variation of % increase without
1imit, and we become interested in much larger values of /), such

that the product ww, remains finite, and equel to &w. Then we

put C, = ;%;9 Flhws) = é;;ﬂ F (W) , and we have!:
Y it
- JwE
F(w) = F(f)c_ AT (‘;0)
-0

The other formula becomes:

. gnwa L
fL0) = Z’% F(nw.) ¢ (aif)

h:-—-q’
This suggests the definition of an integral, which becomes,

in the limit of e —> W —> O

; - gwl | (32)
F(t) =47 F(w) € A w

so that both of the Fourier integral formulae can be deduced from

the Fourier series formulae.
& ean«s.e,i'hi FY;

The interpretation of a Fourier series is that of ro-

tating vectors of various fregquencieg:

Fes

i mruﬁzggﬁé ”PQfJ&LK

as W»h =» o , this merges into a continuous curve, the projection of

the end of which is the voltags. 1£~M‘¢¢4‘Caﬁf£%t5%§~£“
n«faﬁoﬁ-&zuo«fjp\.{




In general, Laplace transformswill solve definite problems
with known initial conditions more easily, while the Fourier trans-
form is best for general arguments about phase and amplitudes,

since they are directly measurable.
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Sixth Leciure

There are certain general conclusions that can be drawn from
the Fourier analysis that are useful in a number of practical
if F(8) and Flw)
and F () e‘]h)to

are transforms of each

cases, For instance,

other, we Tind that f(¢-ty) are 2lso trans-

forms, so that an cddition of a linear phase term corresponds to
Slope of the Phase CuUrve.

a time delay of one second for every cycle / oycleafﬁe%eﬂsfhgﬁﬁﬁiﬁhnveﬁ
FuaT
are transforms.

amplitude - modu)ated
carrier of frequency a%,me&uia%eéﬁ

. +
awemee, oOinmilarly, f(Q)e and F (u.) F Wo)
The time funetion reprresents =

F(e) ,

that of F(t) but centered around @, instead cf zero.

by snd the F(wFw,) term shows that the spectrum ls simply

3 F(Oov F(9)

Renl

ot

%:&{:J&.:

Frrogioy

4

Botd

vq»aza-‘?, “@x

< out |
> |

we can find the effect of suddenly im-
freguenc!ts
sine wave of freaunencv &, on & fllter which passesjffrom
Force -

; ) . J et
The Imrressed feee 1 represented as dﬁcgﬁft)e J .

Using these theorems,
pressing a

Wl to w2,

L T s
hracket 1

n

The transfors of the

w) =
F( T

civen by

The network functicn is
H(W) = o, Jw| £
o, 2]t LI,

2
[ N A ST P 34 3 - L 5 - 3 = -
(Ho <huse siift need be condidered, as it would rerely laaa



The response 1is then:

/ v W
£t = e ﬁf F{w) H{w) e

[l

cY e : wWe Fwl
=0 577 | (D) vl 3 (G |
— 0,

N
The integral over negative frecuencies may be neglected if @

is not too far from the positive pass band, so we have!

W gw Wl (w -L.;),)t- -
i e 7w * 74
- — e ol D - £
F'(t‘) - &Jﬂ‘j CW"UJG) - &L . '2__ JL{
“i 277 “
(L‘J,-Wg)t
awo (w;-wot (wy-wu) ¢ /5
- 9—-:‘4—55(4 + i:_:ﬁ of 4 )
@J %Jt (W;"Wd)r

Definitions: v y
o A - - -—
5160 --f e, T /

[~}

The cos. integral mav be ev1it into four integrals:

w)

Ky y Pf.z
'C:{:jo!t{ f f f /7)
. (%] Ixq)
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SEVENTH LECTURE

If x; and xp are positive, x; :r‘ xll, Xs = }XZ"’ and integrals

(1) and (3) vanish, leaving:
X3

whd au = 0 (xa) = Cy(x)
(8)
*,
If x7 < 0<x2 , we have
(%
f Sk gy = | SR+ G0 ~Ci (/%) (9)

the integral

. MH e

the 1lst and 3rd integrals cencal, since cosw 1s an odd
u

function. We are left with-

& €
-%—-oef oo Lafe) = L(£): ST 1)

-g e
Xy ‘
X ___C:qdq = /T + Ci(xa) -C{(*x,) (12)
3
If X < X< 0, we have
Xa
Sl ot =TT -Cs(nd) -7+ Gl ) (13)
X —
' = 3 £ X4 — .
he integral ’ ( /) & (/X’/)
(L«JJ-Wu)f
ﬁ-—'ﬁo!b( = Sy (wa-wi)t ~ Sa'(w,-w‘,)t (14)
(“]r‘wa)t
the total response 1s then:

J\*)at‘

()] #7[Colwma)t - Ci (e, wﬁ}

V() =

1=
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if @0 is outside the pass band. If &o is in the band, we have:

éuht !
£ .
V(1) 20 T T + Si(uon-wa) € - 5i(w, -t ] #7[CI(w, - w0 & ‘C‘iCWa'w’o)t]}
| (16)

Paradox: When the impressed frequency is not in the passband,
the response ultimately dies out. Then if the impressed frequency
is suddenly cut off, the principle of superposition réquires that
another response of reversed sign shall take place. But the net-
work has physically no driving force at that time, so this response
must be a frée transient, with modes characteristic of the network
a}g_ng. How is it then that o can appear in the solution? o
pesbdranima, Bow does the network know what frequency to oscillate

at when the drive is removed? How can the network "remember" the

. frequency Wo?
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Concluding Remarks on Feurler Integrals

Certain general features of Fourier integrals can often
be used to get qualitative answers from physical reasoning without
any eguations. Thus, discontimuities in either f(t) or F(w)
produce wiggles in the other function, This can be szeen from the
"Snake in the Complex plane" interpretation of the Fourier integral.(ﬁr?)
If the ;nake is cut off at a certain frequency, the severed end is
rotating at that frequéncy, and wiggles of that frequency appear
in the time function. This fact may be used in antenna design
where it is desired to eliminate side lobes. In a broadside array,
the angular radiation pattern is the Fourier transform of the ampli-
tude distribution pattern across the array. Since side lobes
represent wiggles on the @ pattern, it is seen that the way to
avoid side lobes is to make the amplitude X distribution full off
as smoothly as possible, the smoothest way being a Gauss error
curve., The © pattern is then another Gauss error curve.

LW+ e

The way the frequency function falls off as w=s may be

found by inspection of the function f£(t) and the following rules:
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If F(t) has a: F(&) goes down as:
. rinite discontinuity 1/ = 6 db/octave
raa '
discontinuity in ot 1/w°= 12 db/octave

L%

" " o ¢ i

' N 1/43= 18 db/octave

LN F

£77

l/w(n*l): 6(n+l) db/octave

%

2

o
=

No discontinuity in any
2
derivative g‘k'

infini-te discontinuity T{w) —pconst.

(discontin\kt) f

infinite doublet disc. ' F(at) ~w
(discont. insgydtz)

discont. inj -*-fdtn F (&) %‘n_l
0 _

74¢ Peason for this is in the varying quality of cancellation in
the integral defining F(w), due to the smoothness of F(t). The
smoother this function, the more perfect the cancellation xikshx

will be between adjacent half-cycles of the kernel -See%t c'jwt .

P
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_ Laplace
Anelysis of Transmission Lines by the ¥eP¥ewe Transform
g L(%t)
T P
i
GEN, €) ' 2(3)
X =——>
Tundamental equations are:
VzulyE) ’ 7= 7(%¢t)
JV 8 - .
—_— =z 21 ST (1)
ox s-(Ri+L 53 y  Sie-(evici)
taking the La?lace transforms of these equations:
[~ L
s . -
(\/(7‘.5) :fl’c"a&)c Lt T (x55) :_/716701‘)6 stdt
o
we have:
2L LsT -Li.) = = I 7,0
el £T +Ls T To ) = Kels)T +#L7,(1)
o _ . (2)
3..‘:5:- (G—V‘"CS'\/ "Cv,) -~ (G“'CS)[/ *CV,C")
x ‘! - e

in most prectiecal cases we have 1 = o, Vo = 0, s0 we may set up &

differential equation for V or I as follows:

2

v 2°L 2

- . - F3 ~ I
T Eas)(ere)y =7ty SR =Y (3)
where

,)/at.(,K‘H—SDCG-'!"CS) z L C[CS'*‘O)A'" o-..'&]

- 1R & !
r‘:(r*?ﬁ) » T T a 'dl'-@—)
The solution of (3) is obviously
- rX
= Cf°7’+cﬁc

T = f/Zafc,crx- CJ6-77<:( (5)



where
2, s /85
' G+Cs

if we have finite initial values, we may put

& 20( X}

Vo(x)s L -(KH_S)CV,(X)

and we then add to the soclution for V the terms:

rx -7

7
e [ K%(x)ix _ %_;-—- e v, (x)Ax

oY

18

(7)

Equations (5) are recognized as traveling waves, and their

similarity with the well-knowf,steady-state equations suggests

that we can simply use the steady-state equations in all mani-

pulations, and then take the inverse transform of the result to

get our transient solution,
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Example: Distortion of a Unit Step After Traveling thru a

Length of Transmisslon lLine,

Initial voltage = v{o,t) & u(t)
voltage at point x = v(x,t) ‘
. . ] - i
Transform of initial voltage = ¥ogSyed, V(0,5) = 7
S .
X =7
Le

-7
transform at point x is MW Vix, s) = V(o, S)e X

7 = 5 fErei sa

Q

where Vo =

¥ —g—"—) attenuation consgtant

distortion constant

X
! - 35 ']/ aNr

Pair 863.1 of C.F. is

e‘?]/(3+r)(5+f) _e-éf [s+ ;%[wa)j

g(r-p Lo 3 (reot

-—_— —— L N
*VeR-gr I’[""(‘_Mr) Vt.d%lj (O‘Z < é)
We ldentify (s thy(s+¢p) = (5_;_,9)1__ -2
‘ i’()"-f-?) = f
s = 7, = Eo
3}’ (r-c¢) = ¢

-1~
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& . W]ﬁt"?fo" (Z.O <. t)
: -(s+8) . : - ~Fle
the quantity e P to has the inverse transform e t{.,(t,‘ -fa)
[
a "unit impulse” at t = to with area .~ ¢ ‘, So @ we have:
: et
— LaV(sre)- o> oz - - Ft,
T s I e I,[a’ Vthg.é.xj +e Y, (¢t ~T,)
l‘f" o™

so the pair becomes:

_te VEHP- s _(5+€) T e to -Pt '
-e — ——— ¢ T, [eVEr]

vix, s
This is the same _a,s‘_@.ie)xc*é’ﬁt for & factor 1/S which denotes
integration with respect to t. '

Therefore, we have:
t et

- o X e ) 1 -F t‘ N
vine) = T | i T, ):o‘ VEia] At te €(¢-2.)
v oy
This is a unit step of helght e = at t = to, plus

distortion terms due to the integral. The modified Bessel
Function Iy bears somewhat the same relation to an ordinary
Bessel Function In(2) as hyperbolic functions do to trigonometric
ones. Thus:
Talz) =7 Tn(zi) (i:‘lf—T)

which corresponds to . ‘

ek () =yt (zt)
this énalogy can be seen also from the equations

Ji(z) = 1/;“—; AT,

I.-’i (2) = 1}%«—1\2

Infinite series for In(2) is:
we

zZ\m 7 T &)
_
1??(,74-) :(IJ )"!(}'14-)"!),
20

_2_

3¢



the series for Jn{@) is the same except that signs alternate 4 and - o
again ooi'responding to the relation between hyperbolic and trigo-

nometric functions. Using the infinite series representation for

I1(2), we have

vixy) = rz’f ,{-c‘Z [£ \/t"\tujh‘ toﬂ{(‘ﬁ‘ﬁo)

m’ (hfm)i

T — — e -l LT F e -
a mZ’ mil(nim) ] ‘ [t J F “(e t")
o ’ -3

The result is expressed as an infinite series. The accuracy attained

depends on the number of terms carried. If we carry the first two,

with m=0 and m= 1, the result will be wvalid for ¢@< ] -
If m = O, we have
¢
. et / AT -Pt
[ettar g [ ]
2y ’ :

when m = 1,

-FT 1 [ 2
_(’t[ . t _~ 2
f : toa] g = - e [ +-'ZP +.----&

g__._, te LA Ler -
+ [O-FJ- (°J+(od[e -e Fto]

For the voltage W) we then have, to this approximation:

- 2
T {0 S een_eet)

____2' -‘F'f-‘o
byt 2]

"f‘@-‘oboﬁ((t ‘f,o)



34

The final value at t -2 may be found from the following theorem :

Foo) = Sy 5 FC) 2 om VRS

so that the final distribution is a steady voltage, deereasing

exponentially with distance from the generator.

The pulse shape taking only the 1lst term of the infinite series is

given by:
Tts P - Pe

v{N¢) = T.__- e’ﬁt"-—c“ tJ +e ? af/(&-fa)
2f

This prediets a final value of
- £l T g
e [ [ )
I+ '_L-——-—F y
whereas the exact velue has been found equal to:

e R L
e - —

This may be approximated by:
-, m)-;_ ~ E-Fﬁa[{-— r‘/.’,trozj

—
—_—

e

E e-{"éa Z) + :{:foj

This is identical with the walue given by the first term of the
series, showing that the approximate solution is quite good, even for
large T4 Incidentally, the equations show that the percentage of

distortion terms incresses as we go down the line, so that eventually

-



the initial sharp rise is lost in distortion terms, The final

value ig always greater than the value of the initial sharp jump.

33



