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Analysis of nuclear magnetic resonance data requires an estimation of the parameters
(&.8.. frequencies and amplitudes) that characierize the NMR frec-induction-decay data.
Baycsian probability theory provides a rigorous formalism for optimal parameter estimation
and use of prior information. Although specific algorithms for time-cficient implementation
of Bayesian methods have been presented (G, L. Bretthorst, J. Magn. Reson 88, 533,
552,571, 1990 G. L. Bretthorst, J. Mfagn. Reson., in press), acceptance of such methods
requires demonstration of substantial improvements in the accuracy of parameter estimates.
Toward this end, we report a comparison between the diserete Fourier transform {(DET)
method and Bavesian analysis for estimating the signal freguency and anipfiinde of a single-
frequency NMR resonance 4s a function of the signal-to-noise (S/ V) ratio of 1he FID
data. The results and mcthods are also applicable 1o data composed of muluple. well-
separatled frequency components. Parameter estimates are made both with and without
prior xnowledge of the decay rale and/or phase of the NMR signal. Under conditions
where prior information about the signal phase and decay rate constant is not available,
Bayesian analysis pravides more precise estimates of the signal frequency and continues
to do so considerably after the DFT method fails due to poor S/& levels. In accordance
with theory, the Bayesian and DFT methods vield identical fregiency estimates when the
IDET estimates are obtained from a zero-padded absorption spectrum when prior infor-
mation about both the decay raie constant (i.e.. matched exponential lilter) and the signal
phase is available. In all cases. Bayesian analvsis 15 substantially more precise than the
DEFT method for estimating signal ainplinudes. Reasons for the differences observed between
the two analvsis techniques are discussed in detail. A1 this level of validation. Bavesian
analysis offers distinet advantages over DFT procedures for NMR parameter estimation,
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T'wo major nuclear magnetic resonance parameters that a spectroscopist often wishces
to determine from time-domain NMR data are the frequencies and the amplitudes
of the observed signals. Accurate estimation of these quantities 1s kev 1o clucidating
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structures and identifyving dynamic processes on a molccular level. Most NMR lab-
oratories currently estimate these parameters by examining a frequency-domain NMR
absorption spectrum that results from a discrele Fourter transform (DFT) (7-4) of
the complex time-domain free-induction-decay NMR data. The DFT is usually per-
formed in conjunction with zero-filling and appropriate apodization (3, 6) of the time-
domain data to help improve the frequency-domain digital resolution and signal-to-
noise (.S/N) ratio, respectively. Frequency estimates for NMR signals are then obtained
using secondary procedures, ranging from simple peak-picking routines to nonlinear
least-squares fitting procedures, applicd to the real part of the DFT (i.e., the absorption
spectrum). Similarty, integrated intensities for a defined region of the spectrum span-
ning the peak of interest provide quantitative estimatces of the concentration of spins
giving rise to the NMR signal.

Although NMR data analysis using the DFT 1s clearly useful, a number of well-
documented deficiencies of the method are known to exist (7, 8). For cxample, large
errors in the NMR parameter estimates can result for FID data containing multiple
decaying sinusoidal frequencics which overlap in the corresponding frequency-domain
absorption spectrum. In such cases, peak maxima in the frequency spectrum do not
necessarily correspond with the actual frequencies. and separate signal amplitudes
cannot be determined via integrated arcas. In addition, no means exist to determine
the quality or precision of a singlc independent measurement for parameter estimates
obtaincd from the DFT absorption spectrum or from nonlinear least-squares fitting
proccdures. Baseline distortions in the absorption spectrum also limit DFT perfor-
mance, especially when rapidly decaving signals are present in the FID data. Such
distortions result from finite pulse widths and delays prior to data sampling and are
one of the major sources of baseplane distortions. including ¢, and ¢, ridge artifacts
(7). that hinder the analysis of two-dimensional and other multidimensional NMR
experiments. NMR FID data analysis using the DFT also suffers at low frequency-
domain S/ N levels, where manual and automatic data phasing become difficult, making
it impossible to differentiate between large random noise peaks and incorrectly phased
low-intensity resonances.

Recently, non-Fourier-based alternatives have been used to examine time-domain
NMR FID data. For such mcthods to be accepted, their ability to obtain precise and
accurate estimates of NMR parameters must be demonstrated. Two such mecthods,
maximum cntropy (MEM) and linear prediction (LP), have shown considerable
promisc in providing reliable NMR paramcters cstimates {8}. Reports that these
mecthods offer simultaneous 1mprovements in S/ A and resolution (9-/7) have been
made. but these claims arc controversial (72, /3). MEM and LP have also been eval-
uated for use with in vivo NMR spectroscopy ( /4). As potential solutions to some of
the problems associated with the DFT, new analysis methods must be directly compared
to the DFT procedures. Such a comparison has been reported for MEM (75, 16).

Another non-Fourier analysis technique, Bayesian probability theory, has also been
applied to the problem of NMR paramcter estimation ( /7-22). Bayesian analysis
permits the introduction of “prior information™ about the NMR signal and, by rigorous
use of probability theory (23) and Bayes’ theorem (24), sclects the model that 1s most
consistent with this information and the time-domain NMR data. As a maturce, well-
understood discipline. NMR spectroscopy offers an 1deal area for application of Bayes-
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1an analysis. Good mathematical models for NMR data are available and can be used
to improve the estimates of the frequencics and amplitudes of sinusoidal NMR signals.
In addition, unintercsting or nuisance parameters ar¢ removed through the well-cs-
tablished process of marginalization. For example, in cstimating the frequency. the
signal amplitude and the decay rate constant can be treated as a nuisance paramcter.
while frequency and decay rate constants are nuisance paramcters when estimating
the signal amplitude. Like other analvtical procedures. the ability of Bavesian methods
to estimate NMR parameters from time-domain data is hmited by the S/ ratio of
the data. Bavesian methods do not improve the inherent S/ A level of the experiment.
Optimal parameter estimates ¢an be extracted from the ume-domain data by asking
very specific questions about the data and then calculating a numerical probability
for the answers to these questions. In practice, an estimate 1s chosen as the maximum
in the poslerior probability distribution that is calculated from a mathematical for-
mulation of the question. Improved precision and accuracy for the parameter estimates
are obtained by more efficient use of the prior information about the exact (or theo-
retical ) nature of the data and the manncr in which 11 has been acquired.

The present work reports an empirical comparison between the abilities of the DET
and Bayesian probability procedures to analvze well-separated resonance frequencics
in NMR FID data. Our emphasis is on ¢valuating the precision that the two methods
provide 1n estimating the frequency and signal amplitude of the NMR resonance
under conditions of decreasing S/ N levels. For brevity, we have excluded estimating
the decay rate constants. Probability theory indicates that for n well-separated {re-
quencies. optimal frequency cstimates are obtained by sclecting the 7 most probable
single-frequency estimates. Thercfore. to avoid redundancy. we have used a single-
frequency model system. It can be formally shown (27) that in the absence of prior
signal phase information, frequency estimates measured from a zero-padded. expo-
nentially apodized (using a matched-weighting filter) DET power spectruni are identical
to those obtained using Bayesian analysis, if the NMR resonances are well separated.
That is. the power spectrum 1s the optimal statistic for obtaining frequency estimates
in the absence of prior phase information. If prior phase information 1s known, thc
absorption spectrum provides the optimal statistic for frequency estimation under the
same conditions. Hence, we have made comparisons between the two analvtical pro-
cedures in the presence and 1n the absence of prior knowledge of the signal phasc and
decay rate constant. In addition. cstimates of the signal amplitude are reported by
Bavesian procedurcs as the pcak of the amplitude probability distribution and by DFT
procedures as the integrated area of the NMR resonance of the absorption spectrum.
Under ideal conditions, these two quantities reflect equivalent quantitative measurcs.
Thus, we reler to both as the NMR signal amplitude.

EXPERIMENTAL MLETHODS

All "H NMR data were acquired on a Varian Umty 500 MHz NMR spectrometer
equipped with a Varian 'H/'""F NMR probe. A '"H FID was collected for cach of four
D-0O samples containing differing amounts of GdCly 10 shorten the decay rate of the
observed residual HOD resonance. Linewidths for these samples were delermined
from the absorption spectrum 1o be 8, 32. 240, and 832 Hz following a DFT. All data
were collected on nonspinning samples under conditions that avoid radiation damping
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using identical acquisition parameters { bandwidth, 20 kHz: acquisition time, 1.237 s
= 10773 double-precision complex data points. 24,736: recvele delay. >2077: tem-
perature, 30°C). For data acquisitions using multiples of four phase-cycled transients,
a time-domain RMS S/ N ratio of at Icast 4000 was achieved for each sample FID. In
all cases, the signal was placed — 1000 Hz off resonance and had decayed to well below
the noise level by 16K data points into the data set. NMR signal amplitudes were
arbitrarily scaled 1o a valuc of 100 for convenience of display and discussion.

Fach of the four FIDs was cxamined using the DF'T and Bayesian analysis methods
described below at noise levels characterized by a known standard deviation (o). At
cach integer valuc of o ranging from 1 1o 30. 50 different individual Gaussian white
noisc sets were generated (25). This series of 10.000 {1.c., 4 FIDs; 2500 noisc samples/
FIDY unique combhined data sets (1.c., FID + Gaussian noise} was then analvzed to
obtain frequency and signal amplitude estimates. Standard deviations for the NMR
parameter estimales were computed at each o from the 50 independent parameter
estimates made tor cach of the combined data scts. Before deciding to use computer-
generated noise, we verified that noise collected on the spectrometer gave statistically
identical results when the audiofilter bandwidth was set to twice the spectral window.
IFor the scries of combined data sets. a ¢ value of 1 corresponds to a time-domain
peak 1o RMS S/A of 100 and a ¢ value of 100 corresponds 10 a Hme-domain S/N of
1. On the basts of the results of the initial survey. some data series were ¢xtended 10
higher ¢ values for presentfation purposes, as indicated 1n the text.

The Fourier number for cach analysis procedure was adjusted to adequatcly define
the peak shape and 1o help minimize computing time. Fourler numbers of 128K (0.31
Hz/point) and 64K (0.61 Hz/point) were used lor the 8 and 32 Hz lincwidth data
scries, respectively, while a Fourier number of 16K (2.4 Hz /point) was used for both
the 240 and 832 Hz linewidth data serics. Time-domain S/ NV ratios were measurcd
bv comparing the signal amplitude m the combined data 10 the RMS noise in the last
5% of the data. Frequency-domain S/ A ratios were estimated using Varian software
that calculates the S/N ratio as the signal height divided by 2 X RMS noise level, All
calculations and data processing were performed on SUN workstations using either
automated C-shell scripts or Varian MAGICAL macros.

Discrete Fourier ransformation procedures. Fach combined data set {or the four
different HOD samples was analyzed using Varian software { VNMR soltware version
3.1) to obtan frequency and signal amplitude estimates of the HOD resonance ac-
cording 1o the following four DFT procedures: (1) DFT-1. unweighted (i.c.. no apod-
ization) with a softwarc-driven automatic zero-order phasce correction (i.¢.. without
limewidth and signal phase prior information, but s¢e below ) (1) DET-I1. unweighted
but using a software-determined zero-order phase correction obtained from the highest
S/N data set (1.e.. without linewidth prior information. but with signal phase prior
information ); (ii1) DFT-III, weighted with a matched exponential {ilter and using a
soltware-driven automatic cro-order phase correction (L.e., with linewidth prior in-
formation. but without signal phase prior information): and {iv) DFT-1V, weighted
with a matched exponential filter and using a software-determined zero-order phase
correction obtained from the highest S/.V data set (i.c.. with both linewidth and signal
phasc prior information ). The DFT analvsis procedures are summarized in Table 1.
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TABLE |

Summary of DFT and Bavesitan Analvsis Procedures

Linewidth prior Signal phasc prior Labels
Method information information (plots, curve)
Dr-1# No No A, a
DEFT-IT No Yes C.c
DFT-1II Yes NoO E.e
DIFT-1V Yes Yes G g
Bavesian-| No No B.b
Bayesian-11 No Yes D. d
Bayesian-IIH Yes No EFf
Bavesian-1V Yes Yes H. h

¢ A matched filter was applied before using automatic zero-order phasing
routines, but then removed to obtain frequency and signal amplitude parameler
estimates.

Off-resonance frequency estimates at a given o for the combined data scts were
obtained by picking the highest point in the frequency-domain NMR absorption spee-
trum. The integrated intensity or signal amplitude estimates were determined by taking
the Gaussian quadrature integral or straight sum over the region of the absorption
spectrum containing the peak. Integration limits for this region werce adjusted for each
HOD sample to encompass 90% of the total integrated intensity for a Lorentzian
lineshape {1.e.. £6.3 X (full width at half-height of the highest S/ N data)]. This rep-
resents a hidden use of prior information. When matched weighting filters and zcro-
order phase corrcctions were used as prior information in the DET-II, DFT-1II. and
DET-1V analysts procedures. they were determined from the highest S/ A data set in
the series using analvtical procedure DFT-1.

A number of ancillary measures were taken to help improve the robustness of the
software~driven DFT procedures. To improve the automatic spectral phasing at iow
S/ N levels, a matched filter (prior information) was applied before using automatic
phasing routines in procedure DFT-1, but then removed for purposes of estimating
the NMR parameters. Additional corrections for errors mtroduced by the automatic
phasing routine were made for all the DFT procedurces by applving a 180° phase
correction when a negative signal amplitude was found within + linewidth hertz of
the known frequency. Considerable improvement in the signal amplitude estimates
al low S/ N levels was obtained by setting the integration limits on the basis of the
known linewidth (including contributions resulting from line-broadening apodization),
rather than the linewidth determined for the estimated resonance by the DFT pro-
cedures. These modifications are equivalent to using prior information and introduce
a form of subjectiveness to the analysis procedure that mimics that which would
accompany manual processing techniques. Without such modifications, muich greafer
excursions in the precision of the parameter estimates were observed at high o values
using the DFT procedures.

Bavesian analvsis procedures. For the Bavesian analysis. the series of combined
data scts for the four HOD samples were analyzed according to the following four
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procedurcs, which correspond 1o similar procedurcs used in the DFT analysis: (1}
Bavcsian-I, independent of the signal decay rate constant and phase; (i1} Bayesian-II,
independent of the signal decay rate constant. but given the signal phase: (ii1) Bavesian-
I11, given the signal dccay rate constant, but independent of the signal phase; and (iv)
Bayesian-IV, given both the signal decay rate constant and the signal phasc. The
Bayesian analysis procedures are summarized in Table 1.

The posterior probability distributions for the frequencies were calculated indepen-
dent of the signal amplitudes, while the postcrior probability distributions for the
signal amplitudes were calculated independent of the frequencies. Decay rate constant
and signal phase prior information was incorporated in the Bayesian-I1. Bavesian-I1I,
and Bavesian-1V analysis procedures in a manner similar to that reported previously
(7/7). Inclusion of prior information directly into the Bayesian estimation procedures
eliminates the need to treat the decay rate constant as a nuisance parameter. Such
modifications greatly reduce the computational time by ¢climinating the need to mar-
ginaliz¢ the decay rate constant using the rules of probability theory (22). For all
amplitude estimates, the frequency was marginalized. A detailed description and theo-
retical basis for these procedures can be found in the Iiterature (/7-22). In addition
10 estimating the parameters. probability theory carrics with it an estimate of the
uncertainty of the parameter estimate (26 ), which can be determined from the width
of the posterior probability distributions.

RESULTS AND DISCUSSION

This study compares the ability of DFT and Bayesian probability theory to estimate
the frequency and the signal amplitude of a single, exponentially decaying sinusoid
from NMR FID data. Comparisons arc made as a function of the S/ N level of the
FID data. Parameter estimates obtained for very high .S/ FID data arc taken as the
true parameter values ( frequency. — 1000 Hz; normalized signal amplitude, 100). The
deviation or scattcr from these values reflects uncertainty in the cstimates introduced
by the addition of noise.

Linewidth dependence. Figure | shows representative 'H NMR spectra and their
frequency-domain S/ N values for all four HOD samples, which were obtained using
the DFT-I analytical proccdure at two time-domain S/ N levels (¢ = | and ¢ = 10),
It is clear from Fig. 1 that identical time-domain S/ N ratios at a given ¢ do not
translate into identical frequency-domain S/ A ratios. The height of the HOD resonance
obtained from the absorption spectrum scales inversely with the resonance linewidth,
thus the frequency-domain S/ N ratio will decreasc as the decay rate constant increascs
for constant time-domain S/ & levels. Such a dependence upon linewidth has profound
effects upon the performance of both the DFT and the Bayvesian methods.

The average frequency and signal amplitude ¢stimaites { +one standard deviation)
obtaincd using the DFT-IV procedure for the 8 and 832 Hz linewidth HOD samples
arc plotted as a function of ¢ in Fig. 2. The plots reveal that both linewidths display
ncarly identical functional behavior as the S/N level decreases. Estimation failure
occurs at the point where the standard deviation in the frequency estimates dramatically
increasc. Failures are observed at o =~ 350 and ¢ = 50 for the 8 Hz (Fig. 2A) and 832
Hz (Fig. 2B) linewidth HOD sampiles, respectively, and represent the S/A [evels bevond
which the technique becomes essentially useless for estimating frequencics. These o
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Fi. 1. Representative '"H NMR absorption spectra for the 8 Hz (A and B). the 32 Hz (C and D). the
240 Hz (E and ), and the 832 Hz {G and H) HOD samples for noise standard deviations (o) of | and 10.
The spectra were generated using the DFT-[ analvsis procedure (i.e., no exponcntial apodization with an
aulomatic zere-order phase correction). While the integrated area in cach spectrum is identical, vertical
scales have been adjusted for each plot so all peak heights are equal (A, C. E, and G) or are visible (B, D,
F.and H}.

values correspond to time-domain S/ N ratios of approximately 0.3 and 2.0, respec-
tively. Above these failure points, peak-picking routines report the highest random
noisc peak in the absorption spectrum as the frequency. Unlike the frequency-esti-
mation behavior, the DFT-IV analysis vicids average signal amplitude curves in Fig.
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Fi. 2. The average frequency and the signal amplitude estimates (Fone standard deviavon) tor the 8
Hz (A and Cyand 832 He (B and D) TIOQD samples plotted as a lunction of the noise standard deviation
(o). Average parameter values and standard deviations were computed using the DET-IY procedure (i.e..
with prior hnewidth and signal phase information ) at cach o using 30 individual combined data scts {signal
plus noise ). Estimated frequencies and amplitudes are referenced or normalized to the highest S/ data set
( frequency. 1000 Hz: normalized signal amplitude, 100).

2 that show no dramati¢ failure point for erther lincwidth. Errors in the amplitude
cstimates increase linearly with increases in o. At high o values, the average signal
amplitude estimates slowly approach zero. The tendency toward zero at poor S/ V
levels 1s a consequence of averaging amplitude estimates resulting from 1ndividual
noisc peaks which have been selected as the resonance {requency.

The data displaved in Fig. 2. along with similar plots for the 32 and 240 Hz linewidth
HOD samples (data not shown), demonstrate that the uncertainty in the parameter
estimates and the faillurc point for the DFT-IV frequency estimate scales with the
NMR resonance linewidth. Similar behavior was verified for the DFT-1, DFT-I1, DET-
111, and all four Bavesian procedurcs. For a given S/ N level, an increase in the linewidth
of the NMR signal increases the uncertainty in the NMR paramcter estimates. For
similar decreases in the S/ N level, however. the percentage of change in the precision
for a given analvsis procedure 1s independent of the inewidth. Companson of all
linewidth data indicates that the frequency-estimation failure point scales roughly
inversely with the square root of the signal decay rate. In summary, although the
linewidth of the NMR signal affects the precision attained at a fixed time-domain
S/ AN Tevel for a given DFT or Bayesian analysis procedure, differences in linewidth
merely scale the results for @ given method and analytical procedure, Therefore. further
discussions focus upon a single linewidth with the understanding that results for other
lincwidths have the same functional torm and arc scaled accordingly.

Frequency estimation. Figure 3 summarizes the individual DET and the Bavesian
frequency estimates for a 32 Hz hinewidth HOD sample plotied as a function of 6.
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FI1G. 3. [ndividual frequency cstimates of 32 Hz linewidth HOD sample plotted as a function of the noisg
standard deviation (¢). Results are shown for (A) the DFT-I, {B) the Baycsian-1. (C) the DFT-IL (D) the
Bayesian-1l, (E) the DFT-[II, {F) the Bayesian-Ill. (G) the DFI-1V, and {H) the Bayesian-1V analyses
procedures. (See text and Table | for description of the procedures}, Fifty independent frequency estimatcs
were made at cach ¢ value for a total of 2500 individual estimates in cach panel,

Direct comparisons and behavioral trends for all four DFT and Bavesian analysis
procedurcs can be made as ¢ increases by examining the amount of scatter in the
data. All analysis procedures for both mcthods give frequency estimates with minimal
scatter for the HOD resonance at high S/ A levels. At lower S/ N levels, the difference
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in the amount of scatter obscrved for the DFT and Bavesian methods is striking and
depends on the prior information supplied during the analvsis.

The scatter 1n the frequency c¢stimates obtained using the DET-1 and the DET-II
analysis procedures (Figs. 3A and 3C, respectively) at o values <30 is neglgible on
the scale of these plots, but increases dramatically at higher ¢ values. Usc of signal
phase prior information has hittle effect on the amount of scatter in the DFT frequency
estimates, reflecting good performance for the modified automatic phasing routines
(i.c., phasing in the presence of a matched cxponential-weighting filter). Significant
improvements arc achicved in the DFT-1IT and DET-1V procedures (Figs. 3E and 3G)
when prior knowledge of the linewidth permits the appropriate matched weighting
filter 1o be applied to the data during the parameter-estimation procedures. As expected,
the least amount of scatter in DFT frequency estimates 1s obtained using the DEFT-IV
procedure when prior information on both the linewidth and the signal phasc is supplied
{Fig. 3G) in the analysis.

In contrast to the DFT results, the Bayvesian frequency-estimation results show little
dependence upen the direct incorporation (as opposed to treatment as nuisance pa-
rameters) of signal decay rate constant and signal phase prior information into the
analvsis procedure. Such findings are not unexpcected. since use of prior information
1s an inherent teature of the Bavesian analvsis. ¢ven where 1t 1s not directly supplied.
As a result, all four of the Bavesian procedures (Figs. 3B, 3D, 3F, and 3H) give nearly
identical results. Scatter in the Bayesian results 1s significantly reduced from the scatter
observed for the DFT-1 and DFT-II procedures. The Bayesian frequency estimates
are also supcrior to the DIFT-IN frequency estimates. {7 accordance with theory, how-
ever, when both a matched weighting filter and the known signal phase are used, the
Trequency estimates and scatier obtained using the Bavesian analysis (Fig. 38) and
the DET method (Fig. 3G) are essentially identical,

Although considerable effort was taken to improve the performance of the software-
driven DFT procedures { vida supra). the methods fail to estimate the HOD frequency
when the highest peak in the absorption spectrum becomes a uniformliy distributed
noisc peak. At this point the frequency estimates begin to randomly deviate from the
known value of — 1000 Hz. The ¢ value at the failure point can be approximated for
the 32 Hz Iinewidth HOD sample from the scatter plots in Fig. 3. The DFT-1 and
DET-II procedures begin to fail at o values between 40 and 50, while the DET-III
procedure fails at o = 130. The failure point in the DFT analvsis is greatly affected
by the use of decav rate constant and signal phase prior information. Apodization of
the FID NMR data using ¢ matched weighting filter extends the failure point to higher
o by effectively increasing the frequency-domain S/ N of the absorption spectrum and,
thus. improves the utility of simple peak-picking procedures. By contrast. application
of prior signal phasc information, compared to the use of modified automatic phasing
routines, has little effect on the failure point of the IDFT analysis. Since the degree of
scatter in the analysis depends upon the decay ratc of the NMR signal {sce Fig. 1},
the tarlure point expected for the DET-IV analysis of the 32 Hz linewidth HOD sample
(Fig. 3G) should fall between the values determinced for the 8 and 832 Hz linewidth
HOD samples (¢ = 30 and o = 350, respectively). This 1s observed. The DFT-IV
frequency cstimates for the 32 Hz linewidth HOD sample start to fail at ¢ = 1350,
consistent with our earlier observation that parameter estimates for fast-decaving sig-
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nals are less precise than those for slowly decaying signals for a given time-domain
S/ N level.

Unlike DI'T frequency estimates, which depend upon the frequency-domain S/ N
level, Bayesian procedures depend upon the time-domain S/ N level. Bayesian fre-
quency estimates are not subject to errors introduced by the peak-picking routines
applied in the frequency domain. Consequently, different faillure points arc observed
for the Bayesian mcthods and for the DFT mcthods. Bayesian analysis begins to fail
when the spectral width of the posterior probability distribution for the frequency
becomes comparable to the spectral width of the NMR absorption spectrum. Figure
3 demonstrates for all the Bavesian analytical procedures that this {ailure occurs at
S/ N levels much lower (¢ = 160) than those in the DFT-I. DFT-II, and DFT-III
procedures. In fact, at ¢ values where the DFT analysis procedures fail completely,
the time-domain S/ N ratio is still sufficient 1o provide reasonable frequency estimates
using Bavesian methodology. In the absence of decay-rate-constant prior information,
the Bavesian method 1s more computationally intensive than the DFT method. re-
quiring on the order of 20 times more processing time. When this information 1s
supplied. however, the amount of computational time required for the two procedures
is approximately the same, Such reductions in processing time are achieved by elim-
inating the need to marginalize nuisance parameters and have important consequences
in practical applications of the Bavesian method, where one can often estimate the
NMR resonance linewidth.

Signal amplitude estimations. Figure 4 shows the individual DFT and Bayesian
sienal amplitude estimates for the same 32 Hz-linewidth [HHOD sample that was ex-
amined in Fig. 3. At high S/ N levels (¢ < 30). moderate scatter in the signal amplitude
cstimaltes is observed for both methods. Considerably more scatter and large differences
between the two methods are noted at low S/ A levels. The most dramatic difference
between the DFT and Bavesian procedures is seen as groups of estimaies ceniered
around zero amplitude in the DIFT-T and DFT-11 signal amplitude plots (Figs. 4A and
4C. respectively). In the absence of a matched filter, these methods begin to fail at
estimating the signal amplitude at a o value between 40 and 50. This point corresponds
well with the failure point observed for the DFT-1 and DFI-II frequency estimates in
Fig. 3. Use of signal phasc information (Fig. 4C) gives only slight improvements in
the DFT amplitude estimates, again indicating that the automatic phase calculations
arc working well in the presence of a matched-exponential filter. More dramatic 1m-
provements arc observed in the DFT signal amplitude estimates when a matched filter
is applied to the data (Figs. 4E and 4G) during the parameter-estimation procedures.
The bands of data points at zero amplitude essentially disappear. As with the frequency
estimates, the smallest amount of scatter for the DET amplitude estimates 1s observed
when prior information on both the decay rate constant and the signal phase 1s used
in the analysis (Fig. 4G).

The Bayesian signal amplitude estimates shown in Fig. 4 exhibit less scatter than
the DFT amplitude cstimaites. Like the Bavesian frequency measurements, direct in-
corporation of the signal decay rale constant and signal phase prior information into
the analvsis procedure (e.g., procedures I1, 111 and IV) has littie effect on the scatter
in the Bavesian amplitude estimates, though slight improvements at low S/ A levels
are observed when prior knowledge of the signal decay rate is provided. This contrasts
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FiG. 4. Individual signal amplitude estimates of 32 Hz linewidth HOD sample plotted as a function of
the notse standard deviatien (g). Results are shown for (A) the DFT-I, (B) the Bavesian-1, { () the DFT-
IL, (D) the Bayesian-Il, (£} the DFT-IIL, (I') the Bayesian-111, (G) the DFT-1V, and (1) the Bayesian-1V
analysis procedures. (See text and Table | for deseription of the procedures). Fifty independent amplitude
estimates were made al each ¢ value for a total of 2300 individual estimates in cach panel.

with the DF1" amplitude estimates, which show a strong dependence upon the prior
information. In addition, the groups of amplitude estimates centered around zero
(Figs. 4A and 4C) are not present (Figs. 4B and 4F) or are present only at ¢ > 150
(Figs. 4D and 4H). Comparison of the Bavesian and DET results in Fig. 4 shows that
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the Bavesian procedures vield significantly better estimates of the signal amplitude at
low S/~ ievels than any of the DFT analysis procedures. In many cases, Bayesian
analysis provides reasonable amplitude cstimates under conditions where the DET
method completely fails, making it the preferred choice for estimating the signal am-
plitude.

The failure of the DFT-I and DFT-II procedures 1o estimate the signal amplitude
at o > 40 1s due to the nability of the peak-picking routines to distinguish between
peaks and noisc spikes. Amplitudes for a given signal can only be estimated and are
meaningful only when the peak-picking routine returns a reasonable frequency esti-
mate. If a noise spike 1s identified as the frequency, for instance, a meaningless random
value close to zero 1s estimated for the signal amplitude. Such effects force the average
amplitude estimate (obtained from a number of individual estimates) toward zero,
as shown in Figs. 2C and 2D, and accounts for the group of signal amplitude estimates
located at zero in Figs. 4A and 4C. Changes in the DFT processing procedures which
improve the DFT frequency cstimates will also lead to improvements in the signal
amplitude estimates. On the other hand, Bayesian methodology 15 not imited by the
robustness of the frequency-domain peak-picking routine. Direct use of prior mfor-
mation of the decay ratc constant and the signal phase gives essentially the same results
as those when this information is not provided. As for the Bavesian frequency-esti-
mation procedures, a 20-fold reduction in processing time is achieved by using the
decay rate constant as prior information. Smaller reductions would be expected when
frequency prior information is used during the amplitude-estimation Bayvesian analysis.

Parameter-estimaie uncertainties. The frequency and signal amplitude standard
deviations computed for all analytical procedures at each o for the 32 Hr linewidth
HOD sample are plotted as a function of ¢ 1in Fig. 5. The paramcter standard deviations
provide an alternate representation of the data shown in Iigs. 3 and 4 and reflect
inherent differences between the DEFT and the Bayesian methods. This figure permits
an assessment of the precision of the NMR paramcter cstimates for cach of the various
analytical procedures as a function of the S/N level. In general, Bavesian methods
outperform thc DEFT metheds at all S/N levels and continue to provide parameter
estimates well after DFT methods fail due to poor S/ N levels.

Figure 5A shows the frequency standard deviation carves for all the DFT and Baves-
1an analvtical procedures. With the ¢xception of the DET-IV analysis (curve g), the
DFT procedures (curves a, ¢, and e) give uncertainties in the frequency cstimates
Jarger than those of any of the corresponding Bavesian procedures ( curves b, d, f, and
h) at all S/ A levels. Superposition of curves d, g, and h demonstrates the similarities
in the performance of the DFT-1V and the Bayesian-H and Bayesian-IV procedures
(curves d and h, respectively). Frequency-gstimation failure points for cach proccdure
shown in Fig. SA are clearly marked by a large 1ncrease in the frequency standard
deviation (from less than 25 Hz to approximately 5000 Hz). Larger values for the
frequency standard deviation past these points are not plotted. Up to the failure point,
a linecar increasc in the standard deviation of the parameter estimates is observed for
a linear increase in . Consistent with observations made for the individual frequency
estimates in the scatter plots, the failure points for the DEFT-1 and DFT-11 procedures
(curves a and ¢} occur at ¢ = 30 and for the DFT-III analysis (curve ¢) at o = 130.
The DFT-1V and all of the Bayesian procedures demonstrate a performance better
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F1;. 5. The standard deviations for the { A) frequency and (B) signal amphtude estimates for the 32 Hz
HOD sample plotted as a function of the noise standard deviation (¢). NMR parameler standard deviations
were computed at each noise stundard deviation from the 30 independent meassurements shown in the
scatter plots in Fig. 3 and Fig. 4. respectively. The curves are designated according 10 the analytical procedure
that was used 1o obtain the parameter cstimate as shown in Table |2 a, DFT-1; b, Bavesian-I: ¢, DFT.IL: d,
Bayesian-[I: ¢. DFT-IIL; f. Baycsian-Ill; g. DET-1V; and h, Bayesian-IV, Lincs have been fit to the initial
portions of the curves In {A) and (B} to vield {C) and (D), respectively.

than those of the other DFT procedures at low S/N levels by extending the failure
point for the frequency cstimates to =2130.

Likewise, the curves in Fig. 5B show that the Bavesian method provides precision
for estimating signal amplitudes better than that of the DFT method. The most dramatic
improvements are obscrved for ¢ values >>30. Failure points for the amplitude-estimate
curves are not as clearly defined as those in the corresponding frequency-estimate
curves { Fig. SA), but still occur where a substantial increase in the amplitude standard
deviation 1s observed. Similar to the frequency estimates, all procedures show a linear
increasc 1n the amplitude standard deviation with increasing ». It 1s clear that the
Baycsian procedurcs provide rcasonable amplitude estimates at S/ levels where the
DFT procedures have failed. In fact. all of the DET procedures fail at ¢ values smaller
than those obscrved for the Bayesian procedurcs, The DFT-1 and DFT-IT procedures
{curves a and c) fail at ¢ = 30, the DFT-III procedure (curve e) fails at ¢ = 50, and
the DFT-IV procedure (curve g} fails at ¢ = 80. The Bayesian-I. Bayesian-I1, and
Bavesian-1I1 amplitude cstimates (curves b, d, and f} fail at about the same ¢ value
for all procedures (¢ = 150). The Bavesian-IV analysis 1s slightly better. failing at &
> 170.

In practice. meaningful DFT amplitude cstimates can be obtained only at S/ N
Jevels greater than those set by the failure points for the frequency estimates (1.c.. one
cannot estimate an amplitude for a signal if its frequency is undetermined). The o
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value at the frequency failure point represents an upper limit beyond which the DFT
amplitude estimates are meaningless. In contrast, reasonable frequency estimates using
the DFT procedures can be obtained at ¢ values where amplitude estimates have
clearly failed. For example, both DFT-1 and DFT-II amplitude estimation begins to
fail at approximately the same o value where DFT-I and DFT-II frequency estimation
starts to fail (¢ = 30). Amplitude estimates for the DET-III and DFT-IV procedures,
on the other hand, fail at much lower ¢ values than the frequency estimate for these
procedures. Similarly, extraction of meaningful Bayesian amplitude estimates are lim-
ited by S/N levels. When phase prior information is available, amplitude-estimation
failure points always occur at ¢ values similar to those for the Bayesian frequency
estimates. When decay rate constant prior information ts used, however, no sharp
failure point for the Bayesian amplitude estimate is apparent. Instead a smooth increase
in the uncertainty is observed even when the frequency estimates begin to fail.

A more gquantitative comparison of the precision for the NMR parameter estimates
obtained from the DFT and Bayesian methods can be made by fitting lines (linear
least squares) to the initial portions of the curves in Figs. 5A and 3B. Fits are shown
in Figs. 5C and 5D for the frequency and signal amplitude estimates, respectively.
Such a fitting procedure 1s reasonable, given the linear relationship that exists (up to
the failure point) between o and the uncertainty in the parameter estimates. The slopes
are summarized in Table 2 and establish the relative order of performance for the
DFT and Bayesian analytical procedures. Smaller slopes correspond to better precision
in the parameter estimate. The order of performance cstablished from Table 2 for the
DFT and Bavesian frequency estimates 1s DFT-1V =~ Bayesian-11 = Bayesian-IV >
Bavesian-1 = Bayesian-1II > DFT-III » DFT-I = DFT-IL. A similar ranking of the
different analytical procedurcs can be established for the signal amplitude estimates
from the slopes in Fig. 3D. The order of performance for the signal amplitude estimates
is Bavesian-1I1 = Bavesian-IV > Bayesian-l = Bayvesian-I1l > DFT-1V > DFT-II >
DFT-III > DFT-I. Examination of similar curves for the 8, 240, and 832 Hz linewidth
HOD samples (data not shown ) shows that the order of performance for the different

TABLE 2

Relative Order of Performance for DIFT and
Bayesian Analysis Procedures
Reported as Slopes for Lines in Fig. 3

Analysis Frequency Signal amplitude

method (SD slope) (8D slope)
DFT-1 0.19 0.36
DFT-1I 0.18 (.29
DET-II 0.13 0.32
DFT-1V 0.029 0.28
Bayesian-I (.041 0.14
Baycsian-I1 0.029 0.14
Bayesian-I11 0.041 0.11

Bayesian-1V 0.028 0.10
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analytical procedures is independent of the NMR signal decay rate constant. An in-
crease in the decay rate constant results in corresponding increases in the slopes for
the frequency and signal amplitude lines shown 1n Figs. 5C and 5D, while a decrease
in the decay rate constant reduces the value of the slope. Changes i the parameter-
estimation failure point for each analvtical procedure are also scaled by the decay rate
constant of NMR signal. In no case, however, does the performance order for the
different analytical procedures change. As previously discussed, the dircet use of prior
information also affects the performance of the DEFT analysis and to a lesser extent
the performance of the Bavesian analysis. The slopes in Table 2 show that with analysis
methods 1, I, and 111, Bavesian methods provide a factor of 3 to 7 improvement in
the precision of the frequency estimates at S/ N levels where the DFT procedures are
successful. Even greater improvemenis are obtained using the Bavesian method at
S/ N levels where the DFT procedures fail. Table 2 also shows that at all S/ levels,
Bayesian analysis is better al estimating the signal amplitude than the DFT procedures
by a factor of 2 to 3.

A major disadvantage with DFT analysis of NMR FID data is that n¢ information
about the uncertainty in the estimate can be obtained for a single measurement. In
contrast, Bavesian analysis provides a dircct measure of the uncertainty in the parameter
estimate from the width of the probability distribution ( 26). These widths arc plotted
for the Bayesian-I frequency and amplitude estimates of the 240 Hz linewidth HOD
samplc in Figs. 6A and 6B, respectivelv. To determine if the widths of the posterior
arc a good measure of the uncertainty in the estimate, the difierence between the
known parameter valuc and the estimate was computed. The results showed the true
parameter vatuc to be distributed within one width of the posterior for 68% of the
time, within two widths of the posterior for 93% of the time, and within three widths
of the posterior for 99% of the time (i.e., a Gaussian distribution ). Thus. the widths
of the Bayesian probability distribution are good indications of the uncertainty in the
parameter estimates.

SUMMARY AND CONCLUSIONS

Our results demonstrate that Bayesian probability theory offers distinct advantages
over the DFT for estimating frequencies and amplitudes of NMR signals from time-
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FIG. 6. Plot of the width of the posterior probability distribution versus the noise standard deviation (o)
for { A) the frequency and (B) the signal amplitude estimates for the 240 Hz HOD sample. Fifty individual
points at each ¢ value are shown,
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domain FID data. These advantages have been demonstrated for the single-frequency
case and arc equally applicable to multiple, well-scparated frequencies. Our conclusions
are based on measured uncertainties determined from repetitive estimates of the NMR
paramcters obtained using a variety of analytical procedures.

Evaluation of Bavesian and DFT methods, with and without prior information,
has indicated that {(a) the DFT analysis is very sensitive to whether prior information
1s included while the Baycsian analysis 1s much less sensitive; (b) Bavesian analysis
provides more precise estimates of the frequency than the DFT method, except when
prior information on both the decay rate constant and phase of the NMR signal is
supplied during data analyvsis, in which case the two methods vield essentially identical
[freqriency cstimates with simitlar precision: (¢) Bavesian analysis gives more precise
estimates of the signal amplitude than the DFT method: (d) the order of performance
for the DFT and Bayesian analvtical procedures (shown in Table 2) is independent
of the decay rate of the NMR signal; and (e} the Bayesian method provides a measure
of the precision for a single estimatce of the NMR parameter for which no comparable
measure can be obtained using DET methodology.

As with other time-domain analysis techniques, Bayesian analysis does not rely on
sccondary parameter ¢xtraction procedures which cxamine the frequency-domain
NMR spectrum. Instead Bavesian analysis estimates the parameters of interest by
direct examination of the time-domain data. Under practical conditions where the
signal decay rale constant and phase are unknown (or a distribution of these is present),
more precisc parameter estimates can be expected using Bavesian analysis than the
DET analysis. We anticipate that Bayesian procedures will play significant roles as
alternative, time-domain NMR data analvsis techniques. Our future investigations
will include overlapping multiple frequencies, truncated FIDs, and multidimensional
NMR data.
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