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ABSTRACT. Bayesian probability theory, using an entropy prior, is applied to the moment prob-
lem when the data are noisy. When the noise level tends to zero, the Bayesian solution tends to
the classic maximum entropy (MaxEnt) solution. The uncertainty in the estimated function is
derived and a numerical example is presented to illustrate the calculation.

1. Introduction

The MaxEnt approach to solving the problem of moments was studied in detail by Mead
and Papanicolau (Mead, 1984). Their analysis assumed the availability of exact moments.
This is a severe limitation of the technique. An attempt to apply MaxEnt to the noisy
moment problem was made by Ciulli et al. (Ciulli, 1991}, Their solution, although essen-
tially correct, left some important questions unanswered. In particular, an estimate of the
uncertainty in the estimated function was not presented. In this paper, the noisy moment
problem is addressed using Bayesian probability theory. Many of the details omitted here
are contained in (Bretthorst, 1992), where the deconvolution problem is studied.

In the moment problem, there are some known moments or data, d;, which are related
to an unknown function z(t):

1
di:/ dtwi(t) o(t) + nsy, i=1,2,... N, (1)
0

where w;(t) are linearly independent known functions, and n; represents the measurement
error in the sth moment.

2. Method of Solution

To solve this problem using Bayesian probability theory the continuous function z(t) is
first replaced with a set of discrete values {xx},k = 1,2,..., M, with z; := 2(tz), and

1



2 S. Kopeé and G.L. Bretthorst

dt — At = 1/M. Using an entropy prior and assigning a gaussian prior probability for the
noise, the posterior probability for one of the z; is then given by

Plzp|D,B,0,1) x fda:l o dapo1dT iy - dear exp {Sp(2)} (2)
with ,
M N M
2 wiltia,
So(e) = 203 fey(togm, - 1)+ 1)+ 3 [ YD 3
j=1 =1 i=1

where D denotes the collection of moments, or data, D = {d1,...,dn}, o is the standard
deviation of the noise, and /3 is a measure of the relative importance of the prior information.

The integrals are evaluated in the Gaussian approximation. To make this approxi-
mation, the values of the z; that maximize Sz{z) are denoted as #). Equation (2) has a
maximum when the derivatives of S4(2) vanish. So &, must satisfy

N } M s
IﬁlOg@ka d; — I ﬁj wi(t;;)zo, EL=1,....M. (4)

Ty i=1 i=1

955(2)

8$k

Because the {w;} are lineazly independent, log# is a linear combination of functions w;.
Thus 2 is given by the solution to

M o
Bai = d; ~ Z———“""(tim i=1,...,N (3)
i i3 M bl - Yy ?

i=1

N
&; = exp {Zakwk(tj)} , (6)
k=1

where the oy play the role of generalized Lagrange multipliers.

Note that vanishing of ¢ implies vanishing of . Thus when the noise level tends to
zero, the left-hand side of (5) vanishes, and Eqgs. (5) and (6) reduce to the maximum entropy
solution to the probiem. However, for noisy moments the maximum entropy solution is only
an approximation to .

To complete the gaussian approximation of Eq. (2), a second order Taylor expansion
is made about &; to obtain

M

P(xy|D,B,0,1) x /dml oo drp1dTpgr o dTprexp { — Z
jl=1

Ru(z; — &)z~ &)
202

(7)

where

N
B85 wi(t;)wi ()
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Fvaluating the integrals one obtains:

T~ $p )P el R Rk
PlziiD,3,0,1) x exp {mﬂﬁa—;ﬁ)— [Rkk - Z%Jﬁ} } s (9)

imn

where Aj is the [th eigenvalue of the kth cofactor of the matrix R, Eq. (8), and e, is the
jth component of the lth eigenvector of this matrix. The kth cofactor of Ry, is formed by
deleting the kth row and column from Ry,,. If one adopts the convention that the cofactor’s
rows and columns are indexed just like Ry, then the sums are over all values of the index
except I=korm=korn=4%.

The above result is valid, provided o is known. In the event ¢ is unknown, we can
eliminate it from the problem by assigning a Jeffrey’s prior and integrating. However, note
that several terms were dropped from Eq. (9). This could be done because when o is
known, these terms are constants. Recovering these terms and eliminating ¢ as a nuisance
parameter one obtains

_ Nt

o 2
P(.’L‘kip,ﬁ,f} X |:Sﬁ(i) -+ (Rkk _ Z elmelnf\ztkakn> (mk _ \i?k)Z} . (10)
!
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3. Estimating the Uncertainty

An estimate of the uncertainty in the z; may be obtained in the (mean £ standard de-
viation) approximation. To compute this, one must compute both {(zy) and (z;zy), the
expectation values of, respectively, z; and zjz,. The expectation value of z; is equal to
2., while

M
1
(:Bj$k> ::Ejik-i—azz—)-\;egje;k (11)
=1

where A; is the Ith eigenvalue of the matrix Ry, Eq. (8), and e is the jth component of
the {th eigenvector of Ryy,. The (mean =+ standard deviation) approximation is then given
by

M

(e”c):? 1/2
STRELL L ks, M (12)

A
=1 l

(mk)est = é.'c + \/ {02)

For finite N, this expression tends to infinity when the number of intervals tends to infinity.
When M grows, our N moment equations become more and more insufficient to determine
the approximate solution. In other words macroscopic data (on moments) cannot affect our
knowledge of microscopic structure. This result occurs because neither the prior probability
nor the likelihood introduce any peint to point correlations in zx, so on any infinitely
small intervals, the function z(t) could be doing wild things, long as the weighted average
(represented by the moments) are satisfied.

4, Estimating the Parameters § and o

In the above, G is assumed known. However, in general, § will not be known. The rules
of probability theory tell one how to proceed. Ome should simply muitiply Eq. (9) by an
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appropriate prior probability and integrate over 4. This procedure will yield the posterior
probability for zy, independent of 3. Unfortunately, 3 appears in these equations in a very
nonlinear fashion and the integrals are not available in a closed form. However, a good
approximation is available, provided the moments are not very noisy. When the moments
aTe not very noisy, the integral over 4 is well approximated by a delta function, and é
functions just fix the value of the parameter. So if one knew where the integrand peaked
as a function of 3, one could simply constraint F to its maximum value.

Fortunately, the posterior probability for 4 can be computed. The value of 8 for
which this probability is maximum is essentially identical to the value of 8 for which joint
probability of z; and # is maximum. The posterior probability for 8, P(8{D,o,I) is
computed from the joint probability for 4 and the all {z} := {&1...2m}:

P(BID, o, 1) = /da:; e dzp P(8,{z}lo, DT)

_ /d;cl---d:zMP(ﬁ{f)P({mHﬁaC”D*I)'

Assuming Jeffrey’s prior, P{8|I) « 1/3, the posterior probability for 3 is given by

X 1 M N
P(BiD,o,1) ox 372 exp {—55535(:%)} H(A@;)"‘?. (13)

=1

The expected value of the noise variance, {¢?), should be replaced by its true value in
Eq. (12), if o is known. However, in typical applications the noise Jevel is unknown. We
then treat ¢ as a nuisance parameter and eliminate it from the formalism. In Eq. (12) this
resulted in the expected value of ¢? showing up in the calculation, so to use Eq. (12) the
expected value of ¢® must be computed. This is given by

(0%) = —— 55 (3). (14)

5. Numerical Example

To demonstrate that for a fixed M the errors remain finite as the noise goes to zero, a
simple example is given. In this example the function exp{—5t?} was normalized over
the interval zero to one and its first five moments, w;(t) = t*~!, were computed. These
exact moments were then used in the numerical example. The posterior probability for
3 was first computed and is shown in the logarithmic plot in Fig. 1A. Note that as 3
goes to zero this posterior probability should go to infinity. However, we were unable to
compute the posterior probability for values of 8 smaller than 107!¢. In spite of this, the
fully normalized posterior probability, Fig. 1B, is a fair representation to a delta function.
Because the probability for F is so sharply peaked, constraining 3 to its peak value is an
extremely good approximation in Eq. 5. Using § = 10~*% in Eq. 5 one obtains the (mean
+ standard deviation) estimates of the function. These are shown in Fig. 2. On this scale
there is no observable difference between the estimated function and the (mean % standard
deviation) estimates. Because of this, we have expanded the region around the origin and
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Figure 1: Probability for [
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Fig. 1. Panel A is a Log plot of the probability for 4. Note that this probability density function
drops some 22 orders of magnitude. Panel B iz the fully normalized probability density function.
For noiseless moments this function should be a delta function. However, computationally we
could not compute it for values of § smaller than 10718, yet the fully normalized density function
is still a good approximation to a delta function.

Figure 2: The Expected Function
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Fig. 2. On this scale no difference is seen between the expected function and the {mean & standard
deviation) estimates. The large box is an expansion of the region around { = 0. The expected
function is shown as the solid line, the one standard deviation errors are shown as the dotted lines.
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have plotted this in the upper right-hand-corner of Fig. 2. Even on this highly expanded
scale the uncertainty in the function is barely visible (dotted lines}.

6. Final Remarks

Probability theory generalizes the Lagrange multiplier equations from MaxEnt in such a
way that a Bayesian solution always exists for some values of . In the case of very
noisy moments, 5 is estimated to be large, the Lagrange multipliers go to zero and the
reconstructed function goes to a uniform function. When the moments are noiseless, o
goes to zero and the Bayesian result is given by the maximuimn entropy solution to the
moment problem. In between there is a kind of minimum-maximum trade off: the result
is a maximum entropy solution that has miniem chi-squared.

For any given problem the entropy prior may or may not be justified. For example,
when the function is known to take on negative values, the entropy prior is not only in-
appropriate, it simply cannot be used. Additionally, there could be other types of prior
information not adequately expressed by entropy. For example, one could know something
about the asymptotic form of the function, or one could want an estimate that has mini-
mur curvature. Such information may be incorporated into an appropriate Bayesian prior
(Bretthorst, 1992). The resulting Bayesian solution will have the same general character-
istics as the one exhibited here: the uncertainty in the function will be a well-behaved
quantity, and in the noiseless limit the Bayesian solution will be equal to the solution of
some constrained optimization problem.
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