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ABSTRACT

Bayesian spectrum analysis is still in its infancy. It was born when E. T. Jaynes derived
the periodogram [2] as a su�cient statistic for determining the spectrum of a time sampled
data set containing a single stationary frequency. Here we extend that analysis and explicitly
calculate the joint posterior probability that multiple frequencies are present, independent
of their amplitude and phase, and the noise level. This is then generalized to include other
parameters such as decay and chirp. Results are given for computer simulated data and
for real data ranging from magnetic resonance to astronomy to economic cycles. We �nd
substantial improvements in resolution over Fourier transform methods.
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I. INTRODUCTION.

Experiments are performed in three general steps: �rst, the experiment must be designed;
second, the data must be gathered; and third, the data must be analyzed. These three steps
are highly idealized and no clear boundary exists between them. The problem of analyzing
the data is one that should be faced early in the design phase. Gathering the data in such
a way as to learn the most about a model is what doing an experiment is all about. It will
do an experimenter little good to obtain a set of data that does not bear directly on the
model to be tested.

In many experiments it is essential that one does the best possible job in analyzing the
data. This could be true because no more data can be obtained, or one is trying to discover
a very small e�ect. Furthermore, thanks to modern computers, sophisticated data analysis
is far less costly than data acquisition, so there is no excuse for not doing the best job of
analysis that we can. Unfortunately, the theory of optimum data analysis, which takes into
account not only the raw data but also the prior knowledge that one has to supplement the
data, is almost nonexistent. We hope to show the advantage of such a theory by developing
a little of it, and applying the results to some real data.

In Section I we outline the calculation procedure used in this paper. The spectrum
estimation problem is approached using probability theory and Bayes' theorem to remove
the nuisance parameters.

In Section II, we analyze a time series which contains a single stationary harmonic signal
plus noise, because it contains most of the points of principle that must be faced in the more
general problem. In particular, we derive the probability that a signal of frequency ! is
present, regardless of its amplitude, phase, and the variance of the noise. An example is
given of numerical analysis of real data illustrating these principles.

In Section III, we discuss the types of model equations used, introduce the concept of
an orthonormal model, and derive a transformation which will take any nonorthonormal
model into an orthonormal model. Using these orthonormal models, we then generalize the
simple harmonic analysis to arbitrary model equations and discuss a number of surprising
features to illustrate the power and generality of the method.

In Section IV, we collect technical discussions of several side issues that are necessary for
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completeness from the standpoint of the expert. Here we calculate a number of expectation
values including the estimated amplitude of the signal, the variance of the data, and the
power spectral density.

In Section V, we specialize the discussion to spectral estimates. In particular we discuss
the estimation of multiple harmonic frequencies and their power spectra. We will then
generalize the frequency and spectrum estimation problem to frequencies and spectra which
are not stationary.

In Section VI, we apply the theory to a number of real time series including Wolf's
relative sunspot numbers, some NMR data containing multiple close frequencies with decay,
and to an economic time series which has a large trend. These analyses will give the reader
a better feel for the types of applications and complex phenomena which can be investigated
easily using Bayesian techniques.

The basic reasoning used in this work will be a straightforward application of Bayes'
theorem: denoting by P (AjB) the conditional probability that proposition A is true, given
that proposition B is true, Bayes' theorem is

P (H jDI) = P (H jI)P (DjHI)

P (DjI) : (1)

It is nothing but the probabilistic statement of an almost trivial fact: Aristotelian logic is
commutative. That is, the propositions:

HD = \Both H and D are true"

DH = \Both D and H are true"

say the same thing, so they must have the same truth value in logic and the same probability,
whatever our information about them. In the product rule of probability theory, we may
then interchange H and D:

P (HDjI) = P (H jDI)P (DjI) = P (H jI)P (DjHI)

which is Bayes' theorem. In our problems, H is any hypothesis to be tested, D is the
data, and I is the prior information. In the terminology of current statistical literature,
P (H jDI) is called the posterior probability of the hypothesis, given the data and the prior
information. This is what we would like to compute for several di�erent hypotheses con-
cerning what systematic \signal" is present in our data. Bayes' theorem tells us that to
compute it we must have three terms: P (H jI) is the prior probability of the hypothesis
(given only our prior information), P (DjI) is the prior probability of the data (this term
will always be absorbed into a normalization constant and will not change the distribution),
and P (DjHI) is called the direct probability of the of the data, given the hypothesis and
the prior information. The direct probability is called the \sampling distribution" when
the hypothesis is held constant and one considers di�erent sets of data, and it is called the
\likelihood function" when the data are held constant and one varies the hypothesis. Often,
a prior probability distribution is called simply a \prior."

In a speci�c Bayesian probability calculation, we need to \de�ne our model;" i.e. to
enumerate the set (H1; H2; : : :) of hypotheses concerning the systematic signal that is to be
tested by the calculation. A serious weakness of all Fourier transform methods is that they
do not consider this aspect of the problem. In the widely used Blackman-Tukey [3] method
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of spectrum analysis, for example, there is no mention of any model or any systematic
signal at all. From the standpoint of probability theory, the class of problems for which
the Blackman-Tukey method is appropriate has never been de�ned. In the problems we are
considering, speci�cation of a de�nite model (i.e. stating just what prior information we
have about the phenomenon being observed) is essential; the information we can extract
from the data depends crucially on which model we analyze.

In the following section we consider the simplest nontrivial model and analyze it in some
depth to show some elementary but important points of principle in the technique of using
probability theory with nuisance parameters and \uninformative" priors.

II. SINGLE STATIONARY SINUSOID PLUS NOISE.

We begin the analysis by constructing the direct probability. We think of this as the
likelihood of the parameters, because it is the dependence of the likelihood function on
the model parameters which concerns us here. The time series y(t) we are considering is
postulated to contain a single stationary harmonic signal f(t) plus noise e(t). The basic
model is always: we have recorded a discrete data set D = fd1; � � � ; dNg; sampled from y(t)
at discrete times ft1; � � � ; tNg; with a model equation

di = y(ti) = f(ti) + ei; (1 � i � N):

Di�erent models correspond to di�erent choices of the signal f(t). We repeat the analysis
originally done by Jaynes [2] using a di�erent, but equivalent, set of model functions. We
repeat this analysis for two reasons: �rst, by using a di�erent formulation of the problem
we can see how to generalize to multiple frequencies and more complex models; and second,
to introduce a di�erent prior probability for the amplitudes. This di�erent prior simpli�es
the calculation but has almost no e�ect on the �nal result. The model we are considering
in this section is

f(t) = A1 cos(!t) +A2 sin(!t)

which has three parameters (A1; A2; !) that may be estimated from the data. The model
used by Jaynes [2] was the same, but expressed in polar coordinates:

f(t) = A cos(!t+ �)

A =
q
A2
1 + A2

2

tan � = �A2

A1

dA1dA2d! = AdAd�d!:

It is the factor A in the volume elements which is treated di�erently in the two calculations.
Jaynes used a prior probability that initially considered equal intervals of A and � to be
equally likely, while we shall use a prior that initially considers equal intervals of A1 and
A2 to be equally likely.

Of course, neither choice fully expresses all the prior knowledge we are likely to have
in a real problem. This means that the results we �nd are conservative, and in a case
where we have quite speci�c prior information about the parameters, we would be able to
do somewhat better than in the following calculation. However, the di�erences arising from
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di�erent prior probabilities are small provided we have a reasonable amount of data. A
good rule of thumb is that one more power of A�1 in the prior has about the same e�ect
on our conclusions as having one more data point.

A. The likelihood function.

To construct the likelihood we take the di�erence between the model function, or \signal,"
and the data. If we knew the true signal, then this di�erence would be just the noise.
We wish to assign a noise prior probability density which is consistent with the available
prior information. The prior should be as uninformative as possible to prevent us from
\seeing" things in the data which are not there. To derive this prior probability for the
noise is a simple application of the principle of maximum entropy, or if the noise is known
to be the result of many small independent e�ects, the central limit theorem of probability
theory leads to the Gaussian form independently of the �ne details. Regardless; the prior
probability assignment will be the same:

P (et) =
1p
2��2

exp

 
� e2i
2�2

!
:

Next we apply the product rule from probability theory to obtain the probability of a set
of noise values fe1; � � � ; eNg given by

P (e1; � � � ; eN) =
NY
i=1

"
1p
2��2

exp

 
� e2i
2�2

!#
: (2)

For a detailed discussion of why and when a Gaussian distribution should be used for the
noise probability, see the original paper by Jaynes [2].

Additionally, the book of Jaynes' collected papers contains a discussion of the principle
of maximum entropy and much more [4].

The probability that we should obtain the data D = fd1 � � �dNg given the parameters is

P (DjH; I) / L(A1; A2; !; �) =
NY
i=1

��1 exp

�
� 1

2�2
[di � f(ti)]

2
�

L(A1; A2; !; �) = ��N � exp

(
� 1

2�2

NX
i=1

[di � f(ti)]
2

)
: (3)

The usual way to proceed is to �t the sum in the exponent. Finding the parameter values
which minimize this sum is called least squares. The (in the Gaussian case) equivalent
procedure of �nding parameter values that maximize L(A1; A2; !; �) is called \maximum
likelihood." The maximum likelihood procedure is more general than least squares: it has
theoretical justi�cation when the likelihood is not Gaussian. The departure of Jaynes was
to use (3) instead in Bayes' theorem (1), and then to remove the phase and amplitude from
further consideration by integration over these parameters. To do this we �rst expand (3)

L(A1; A2; !; �)/ ��N exp

�
� N

2�2

�
d2 � 2

N
[A1P (!) + A2Q(!)] +

1

2
(A2

1 + A2
2)

��
(4)
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where

P (!) =
NX
i=1

di cos(!ti)

Q(!) =
NX
i=1

di sin(!ti)

are the sine and cosine transforms of the data and

d2 =
1

N

NX
i=1

d2i

is the observed mean-square data value. For a simpli�ed preliminary discussion we have
assumed the data have zero mean value (any nonzero average value has been subtracted
from the data), and we simpli�ed the quadratic term as follows:

NX
i=1

cos2(!ti) =
N

2
+

1

2

NX
i=1

cos(2!ti) � N

2
:

The neglected term is of order one, and is assumed small compared to N except for the
isolated special case of ! � 0. We have speci�cally eliminated this special case from
consideration by subtracting o� the constant term. A similar simpli�cation occurs with the
sine squared term. In addition, the cross term, 2A1A2

PN
i=1 cos(!ti) sin(!ti), is at most of

the same order as the terms we just ignored; therefore, this term is also ignored.
The assumption that this cross term is zero is equivalent to assuming the sine and

cosine functions are orthogonal on the discrete time sampled region. Indeed, this is the
actual case for uniformly spaced time intervals; however, even without uniform spacing this
is a good assumption provided N is large. The assumption that the cross terms are zero by
orthogonality will prove to be the key to generalizing this problem to more complex models,
and eventually the assumptions that we are making now will become exact by a change of
variables.

B. Elimination of nuisance parameters.

In a harmonic analysis one is usually interested only in the frequency !. Then if the
amplitude, phase, and the variance of the noise are unknown, they are referred to as nui-
sance parameters. The principles of probability theory uniquely determine how nuisance
parameters should be eliminated. Suppose ! is a parameter of interest, and � is a nuisance
parameter. What we want is P (!jD; I), the posterior probability (density) of !. This
may be calculated as follows: �rst calculate the joint posterior probability (or probability
density) of ! and � by Bayes' theorem:

P (!�jD; I) = P (!�jI)P (Dj!; �; I)
P (DjI)

and then integrate out �, obtaining the marginal posterior probability density for !:

P (!jD; I) =
Z
d�P (!�jD; I)
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which expresses what the data and prior information have to tell us about !, regardless of
the value of �.

Usually, the prior probabilities are independent:

P (!�jI) = P (!jI)P (�jI):

But even if they are not, the prior can be factored as

P (!�jI) = P (!jI)P (�j!; I)

so the calculation can always be organized as follows: calculate the \quasi-likelihood" of !;

L(!) =

Z
d�P (Dj!; �; I)P (�j!; I) (5)

then, to within a normalization constant, the desired distribution for ! is

P (!jD; I)/ P (!jI)L(!):

If we had prior information about the nuisance parameters (such as: they had to be
positive, they could not exceed an upper limit, or we had independently measured values
for them) then equation (5) would be the place to incorporate that information into the
calculation. We assume no prior information about the amplitudes A1 and A2 and assign
them a prior probability which indicates \complete ignorance of a location parameter."
This prior is a uniform, 
at, prior density; it is called an improper prior probability because
it is not normalizable. In principle, we should approach an improper prior as the limit of a
sequence of proper priors. However, in this problem there are no di�culties with the use of
the uniform prior because the Gaussian cuto� in the likelihood function ensures convergence
in (5), and the result is the same.

Upon multiplying and integrating the likelihood (4) with respect to A1 and A2 one
obtains the joint quasi-likelihood of ! and �:

L(!; �) / ��N+2 � exp

�
� N

2�2

�
d2 � 2C(!)

N

� �
(6)

where

C(!) � 1

N

h
P 2(!) + Q2(!)

i
the Schuster periodogram C(!), [5]. has appeared in a very natural way. If one knows the
variance � from some independent source and has no additional prior information about !,
then the problem is completed. The posterior probability density for ! is proportional to

P (!jD; �; I)/ exp

�
C(!)

�2

�
: (7)

Because we have assumed no prior information about A1, A2, and ! this probability density
will yield the most conservative estimate one can make from probability theory of ! and its
probable accuracy.
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C. Resolving power.

To obtain the (mean) � (standard deviation) approximation for the frequency ! we expand
C(!) about the peak

C(!) = C(!max)� b2

2
(! � !max)

2 + � � �

where
b2 � �C00(!max) > 0

we have a Gaussian approximation

hp̂(!)i � 2C(!max) exp

(
�b

2(! � !max)2

2�2

)

from which we would estimate of the frequency

!est = !max � �

b
:

The accuracy depends on the curvature of C(!) at its peak. For example, if the data are
composed of a single sine wave plus noise e(t) of standard deviation �

dt = A1 cos(ŵt) + et

and � � A1, then as found by Jaynes [2]:

!max � ŵ

C(!max) � NA2
1

4

!est � ŵ � �

A1

q
48=N3 (8)

which indicates, as common sense would lead us to expect, that the accuracy depends on
the signal-to-noise ratio, and quite strongly on how much data we have.

However, before comparing these results with experience we need to note that we are
here using dimensionless units, since we took the data sampling interval to be 1. Converting
to ordinary physical units, let the sampling interval be �t seconds, and denote by f the
frequency in Hz. Then the total number of cycles in our data record is

ŵ(N � 1)

2�
= (N � 1)f̂�t = f̂T

where T = (N � 1)�t seconds is the duration of our data run. So the conversion of
dimensionless ! to f in physical units is

f =
!

2��t
Hz:

The frequency estimate (8) becomes

fest = f̂ � �f Hz
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where now, not distinguishing between N and (N � 1),

�f =
�

2�A1T

q
48=N = 1:1

�

A1T
p
N

Hz: (9)

For example, if we have an RMS signal-to-noise ratio = A1=
p
2� = 1, and we take data

every �t = 10�3 sec. for T = 1 second, thus getting N = 1000 data points, the theoretical
accuracy for determining the frequency of a single steady sinusoid is

�f =
1:1p
2000

= 0:025 Hz (10)

while the Nyquist frequency for the onset of aliasing is fN = (2�t)�1 = 500 Hz, greater by
a factor of 20,000.

To some, this result will be quite startling. Indeed, had we considered the periodogram
itself to be a spectrum estimator, we would have calculated instead the width of its central
peak. A noiseless sinusoid of frequency ŵ would have a periodogram proportional to

C(!) / sin2fN(! � ŵ)=2g
sin2f(! � ŵ)=2g

thus the half-width at half amplitude is given by jN(ŵ � !)j = �=4 or �! = �=2N . Con-
verting to physical units, the periodogram will have a width of about

�f =
1

4N�t
=

1

4T
= 0:25 Hz (11)

just ten times greater than the value (10) indicated by probability theory. This factor of
ten is the amount of narrowing produced by the exponential peaking of the periodogram in
(7), even for unity signal-to-noise ratio.

But some would consider even the result (11) to be a little overoptimistic. The famous
Rayleigh criterion [6] for resolving power of an optical instrument supposes that the min-
imum resolvable frequency di�erence corresponds to the peak of the periodogram of one
sinusoid coming at the �rst zero of the periodogram of the second. This is twice (11):

�fRayleigh =
1

2T
= 0:5Hz:

There is widely believed \folk-theorem" among theoreticians without laboratory experience,
which seems to confuse the Rayleigh limit with the Heisenberg uncertainty principle, and
holds that (12) is a fundamental irreducible limit of resolution. Of course there is no such
theorem, and workers in high resolution NMR have been routinely determining line positions
to an accuracy that surpasses the Rayleigh limit by an order of magnitude, for thirty years.

The misconception is perhaps strengthened by the curious coincidence that (12) is also
the minimum half-width that can be achieved by a Blackman-Tukey spectrum analysis [3]
(even at in�nite signal{noise ratio) because the \Hanning window" tapering function that is
applied to the data to suppress side-lobes (the secondary maxima of [sin(x)=x]2 just doubles
the width of the periodogram. Since the Blackman-Tukey method has been used widely by
economists, oceanographers, geophysicists, and engineers for many years, it has taken on
the appearance of an optimum procedure.
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According to E. T. Jaynes, Tukey himself acknowledged [7] that his method fails to
give optimum resolution, but held this to be of no importance because \real time series do
not have sharp lines." Nevertheless, this misconception is so strongly held that there have
been attacks on the claims of Bayesian/Maximum Entropy spectrum analysts to be able to
achieve results like (10) when the assumed conditions are met. Some have tried to put such
results in the same category with circle squaring and perpetual motion machines. Therefore
we want to digress to explain the premise in very elementary physical terms why it is the
Bayesian result (9) that does correspond to what a skilled experimentalist can achieve.

Suppose �rst that our only data analysis tool is our own eyes looking at a plot of the
raw data of duration T = 1 sec., and that the unknown frequency f in (10) is 100Hz. Now
anyone who has looked at a record of a sinusoid and equal amplitude wide-band noise,
knows that the cycles are quite visible to the eye. One can count the total number of cycles
in the record con�dently (using interpolation to help us over the doubtful regions) and will
feel quite sure that the count is not in error by even one cycle. Therefore by raw eyeballing
of the data and counting the cycles, one can achieve an accuracy of

�f � 1

T
= 1 Hz: (12)

But in fact, if one draws the sine wave that seems to �t the data best, he can make a quite
reliable estimate of how many quarter-cycles were in the data, and thus achieve

�f � 1

4T
= 0:25 Hz

corresponding just to the periodogram width (11). Then the use of probability theory needs
to surpass the naked eye by another factor of ten to achieve the Bayesian width (10).

What probability theory does is essentially to average out the noise in a way that the
naked eye cannot do. If we repeat some measurement N times, any randomly varying
component of the data will be suppressed relative to the systematic component by a factor
of N�

1

2 , the standard rule.
In the case considered, we assumed N = 1000 data points. If they were all independent

measurements of the same quantity with the same accuracy, this would suppress the noise
by about a factor of 30. But in our case not all measurements are equally cogent for
estimating the frequency. Data points in the middle of the record contribute very little to
the result; only data points near the ends are highly relevant for determining the frequency,
so the e�ective number of observations is less than 1000. The probability analysis leading to
(25) indicates that the \e�ective number of observations" is only about N=10 = 100; thus
the Bayesian width (25) that results from the exponential peaking of the periodogram now
appears to be, if anything, somewhat conservative. Indeed, that is what Bayesian analysis
always does when we use smooth, uninformative priors for the parameters, because then
probability theory makes allowance for all possible values that they might have. As noted
before, if we had any cogent prior information about ! and expressed it in a narrower prior,
we would be led to still better results; but they would not be much better unless the prior
range became comparable to the width of the likelihood L(!).

D. Elimination of the noise level �.

The above analysis is valid whenever the noise variance (or power) is known. Frequently
one has no independent prior knowledge of the noise. The noise variance �2 then becomes
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a nuisance parameter. We eliminate it in much the same way as the amplitudes were
eliminated. Now � is restricted to positive values and additionally it is a scale parameter.
The prior which indicates \complete ignorance" of a scale parameter � is d�=� = d log�.
This prior was �rst suggested by Sir Harold Je�reys [8] some 50 years ago. It has since been
derived by several di�erent methods [9, 10] as being the only consistent prior which indicates
\complete ignorance" of a scale parameter, by several di�erent criteria of \consistent".
Multiplying equation (6) by the Je�reys prior and integrating over all positive values gives

P (!jD; I)/
�
1� 2C(!)

Nd2

� 2�N
2

: (13)

This is called a \student t-distribution" for historical reasons, although it is expressed here
in very nonstandard notation. In our case it is the posterior probability density that a
stationary harmonic frequency ! is present in the data when we have no prior information
about �.

This simple result shows explicitly why the discrete Fourier transform tends to peak at
the location of a frequency when the data are noisy. Namely, the discrete Fourier transform
is directly related to the probability that a simple harmonic frequency is present in the data,
even when the noise level is unknown. Additionally, zero padding a time series (i.e. adding
zeros at its end to make a longer series) and then taking the discrete Fourier transform of the
padded series, is equivalent to calculating the Schuster periodogram at smaller frequency
intervals. If the signal one is analyzing is a simple harmonic frequency plus noise, then the
maximum of the periodogram will be the best estimate of the frequency in the absence of
prior information about it.

If the signal is other than a single sinusoid, then the above analysis does not apply and
the discrete Fourier transform may peak at the \incorrect" frequencies: i.e. frequencies
di�erent from those we wish to estimate. This occurs, not because the discrete Fourier
transform is \wrong," but because it is answering what we should then regard as the \wrong"
question. Put di�erently, the discrete Fourier transform is by de�nition the spectrum of
the noisy data; but we are trying to use it to estimate a frequency in a particular model. If
that model is other than a simple harmonic model (i.e. if there are several signals present,
or the variation is periodic but not sinusoidal, or there is decay or chirp), there is no reason
to expect the discrete Fourier transform to be a reasonable data analysis method for our
di�erent model. For each model, we must re-examine what probability theory has to say.

To apply these procedures to more complex signals we must generalize the formalism,
this is done in Section III; for now we apply the simple result (13) to Wolf's relative sunspot
numbers.

E. An example: Wolf's relative sunspot numbers.

Wolf's relative sunspot numbers are, perhaps, the most analyzed set of data in all of spec-
trum analysis. These numbers (de�ned as: R = k[10g + f ], where g is the number of
sunspot groups, f is the number of individual sunspots, and k is used to scale di�erent
telescopes onto a common scale) have been collected on a yearly basis since 1700, and on a
monthly basis since 1748 [11]. The exact physical mechanism which generates the sunspots
is unknown and no complete theory exists. Di�erent analyses of these numbers have been
published more or less regularly since their tabulation began. Here we will analyze the
sunspot numbers with a number of di�erent models including the simple harmonic analysis
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Figure 1: Wolf's Relative Sunspot Numbers

SCHUSTER PERIODOGRAM

FAST FOURIER TRANSFORM

STUDENT t-DISTRIBUTION FOR A

SIMPLE HARMONIC FREQUENCY MODEL

Wolf's relative sunspot numbers (A) have been collected on a yearly basis since 1700. The
periodogram (B) contains evidence of several complex phenomena. In spite of this the
single frequency model posterior probability density (C) picks out the 11.04 year cycle to
an estimated accuracy of �10 days.
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just completed; even though we know this analysis is too simple to be realistic for these
numbers. We have plotted the time series from 1700 to 1985, Fig. 1(A). A cursory examina-
tion of this time series does indeed show a cyclic variation with a period of about 11 years.
Next we computed, Fig. 1(B) the Schuster periodogram (continuous curve) and the discrete
Fourier transform (open circles); these clearly show a maximum with a period near 11 years.
It is a theorem that the discrete Fourier transform contains all the information that is in
the periodogram; but one sees that the information is much more apparent to the eye in the
continuous periodogram. We then computed the \student t-distribution" (13), Fig. 1(C),
to determine the accuracy of the frequency estimate without making any assumption about
�. Now because of the processing in equation (13) all details in the periodogram have been
suppressed and only the peak at 11 years remains.

We determined the accuracy of the frequency estimate as follows: We located the max-
imum of the \student t-distribution," integrated about a symmetric interval, and recorded
the enclosed probability at a number of points. This gives:

period accuracy probability
in years in years enclosed

11.04 � 0.012 0.50
� 0.015 0.62
� 0.020 0.75
� 0.026 0.90

as the error estimates. According to this, there is not one chance in ten that the true period
di�ers from 11.04 years by more than ten days. At �rst glance, this appears too good to be
true.

But what does raw eye-balling of the data give? In 285 years, there are about 285=11 =
26 cycles. If we can count these to an accuracy of �1=4 cycle, our period estimate would
be about

(f)est = 11 years� 39 days :

Probability averaging of the noise, as discussed above, would reduce this uncertainty by
about a factor of

p
285=10 = 5:3, giving

(f)est = 11 years� 7:3 days; or (f)est = 11 � 0:02 years

which corresponds nicely with the result of the probability analysis.
These results came from analyzing the data by a model which said there is nothing

present but a single sinusoid plus noise. Probability theory, given this model, is obliged
to consider everything in the data that cannot be �t to a single sinusoid to be noise. But
a glance at the data shows clearly that there is more present than our model assumed:
therefore, probability theory must estimate the noise to be quite large.

This suggests that we might do better by using a more realistic model which allows
the \signal" to have more structure. Such a model can be �t to the data more accurately,
therefore it will estimate the noise to be smaller. This should permit a still better period
estimate!

III. THE GENERAL MODEL EQUATION PLUS NOISE.

These simple results already represent progress toward the more general spectral analysis
problem because we were able to remove consideration of the amplitude, phase and noise
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level, and �nd what probability theory has to say about the frequency alone. In addition,
it has given us an indication about how to proceed to more general problems. If we had
used a model where the quadratic term in the likelihood function did not simplify, we would
have a more complicated analytical solution. Although any multivariate Gaussian integral
can be done, the key to being able to remove the nuisance parameters easily, and above
all, selectively was that the likelihood factored into independent parts. In the full spectrum
analysis problem worked on by Jaynes, [2] the nuisance parameters were not independent,
and the explicit solution required the diagonalization of a matrix that could be quite large.
To understand an easier approach to complex models, suppose we have a model of the form

di = f(ti) + ei

f(t) =
mX
j=1

BjGj(t): (14)

The model functions, Gi(t), are themselves functions of other parameters which we collec-
tively label f!g (these parameters might be frequencies, chirp rates, decay rates, or any
other quantities one could encounter). Now if we substitute this model into the likelihood
(3) the simpli�cation that occurred in (4) does not take place:

L(fBgf!g�) / ��N exp

8<
:� N

2�2

�
d2 � 2

N

mX
j=1

NX
i=1

BjdiGj(ti) +
1

N

mX
j=1

mX
k=1

gjkBjBk

�9=
; (15)

gjk =
NX
i=1

Gj(ti)Gk(ti): (16)

If the desired simpli�cation is to take place the matrix gjk must be diagonal.

A. The orthonormal model equations.

For the matrix gjk to be diagonal the model functions Gj must be made orthogonal. This
can be done by taking appropriate linear combinations of them. But care must be taken;
we do not desire a set of orthogonal functions of a continuous variable t, but a set of vectors
which are orthogonal when summed over the discrete sampling times ti. It is the sum over
ti appearing in the quadratic term of the likelihood which must simplify.

To accomplish this, consider the real symmetric matrix gjk de�ned above (16). Since
for all

P
x2j > 0,

mX
j;k=1

gjkxjxk =
NX
i=1

0
@ mX

j=1

xjGj(ti)

1
A
2

� 0

gjk is positive de�nite if it is of rank m. If it is of rank r < m, then the model functions
Gj(t) and/or the sampling times ti were poorly chosen. That is, if a linear combination of
the Gj(t) is zero at every sampling point:

mX
j=1

xjGj(ti) = 0; (1 � i � N)
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then at least one of the model functions Gj(t) is redundant and can be removed from the
model without changing the problem.

We suppose that redundant model functions have been removed, so that gjk is positive
de�nite and of rank m in what follows. Let ekj represent the j'th component of the k'th
normalized eigenvector of gjk; i.e.

Pm
k=1 gjkelk = �lelj , where �l is the l'th eigenvalue of

gjk. Then the functions Hj(t), de�ned as

Hj(t) =
1p
�j

mX
k=1

ejkGk(t); (17)

have the desired orthonormality condition,

NX
i=1

Hj(ti)Hk(ti) = �jk : (18)

The model equation can now be rewritten in terms of these orthonormal functions as

f(t) =
mX
k=1

AkHk(t):

The amplitudes Bk are linearly related to the Ak by

Bk =
mX
j=1

Ajejkp
�j

and Ak =
p
�k

mX
j=1

Bjekj : (19)

The volume elements are given by

dB1 � � �dBm =

����� eljp
�j

�����dA1 � � �dAm: (20)

The Jacobian is a function of the f!g parameters and is a constant so long as we are not
integrating over these f!g parameters. At the end of the calculation the linear relations
between the A's and B's can be used to calculate the expected values of the B's from the
expected value of the A's and the same is true of the second posterior moments

hBki =
mX
j=1

hAjiejkp
�j

(21)

hBkBli =
mX
i=1

mX
j=1

eikejlhAiAjip
�i�j

: (22)

The two operations of making a transformation on the model functions and a change of
variables will transform any nonorthonormal model of the form (14) into an orthonormal
model (18). We still have a matrix to diagonalize, but this is done once at the beginning
of the calculation. It is not necessary to carry out the inverse transformation if we are
interested only in estimating the f!g parameters, since these parameters are transferred
into the Hj(t) functions.

15



B. Elimination of the nuisance parameters.

We are now in a position to proceed as before. Because the calculation is essentially identical
to the single harmonic calculation we will proceed very rapidly. The likelihood can now
be factored into a set of independent likelihoods for each of the Aj . It is now possible to
remove the nuisance parameters easily. Using the joint likelihood (15) we make the change
of function (17) and the change of variables (19) to obtain the joint likelihood of the new
parameters

L(fAg; f!g; �)/ ��N � exp

8<
:� N

2�2

2
4d2 � 2

N

mX
j=1

Ajhj +
1

N

mX
j=1

A2
j

3
5
9=
; (23)

hj �
NX
i=1

diHj(ti); (1 � j � m): (24)

Here hj is just the projection of the data onto the orthonormal model function Hj . In the
simple harmonic analysis performed in Section II, the P (!) and Q(!) functions are the
analogues of these hj functions. However, the hj functions are more general: we did not
make any approximations in deriving them. The orthonormality of the Hj functions was
used to simplify the quadratic term. This simpli�cation makes it possible to complete the
square in the likelihood and to integrate over the Aj 's, or any selected subset of them.

As before, if one has prior information about these amplitudes, then here is where it
should be incorporated. We will assume that no prior information is available, and thus
obtain the most conservative estimates by assigning the amplitudes a uniform prior. Then
performing the m integrations one obtains

L(f!g; �)/ ��N+m � exp

(
�Nd2 �mh2

2�2

)
(25)

where

h2 � 1

m

mX
j=1

h2j (26)

is the mean-square of the observed projections. This equation is the analogue of equation (6)
in the simple harmonic calculation. Although it is exact and far more general, it is actually
simpler in structure and gives us a better intuitive understanding of the problem, as we
will see in the Bessel inequality below. In a sense h2 is a generalization of the periodogram
to arbitrary model functions. In its dependence on the parameters f!g it is a su�cient
statistic for all of them.

Now if � is known, then the problem is again completed provided we have no additional
prior information. The joint posterior probability of the f!g parameters, conditional on the
data and our knowledge of �, is

P (f!gjD; �; I)/ exp

(
mh2

2�2

)
: (27)

But if there is no prior information available about the noise, then � is a nuisance
parameter and can be eliminated as before. Using the Je�reys prior 1=� and integrating
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(25) over � gives

P (f!gjD; I)/
"
1� mh2

Nd2

#m�N
2

: (28)

This is again of the general form of the \student t-distribution" that we found before (13).
But one may be troubled by the negative sign [in the big brackets (28)], which suggests
that (28) might become singular. We pause to investigate this possibility by Bessel's famous
argument.

C. The Bessel inequality.

Suppose we wish to approximate the data vector fd1; � � � ; dNg by the orthogonal functions
Hj(ti):

di =
mX
j=1

ajHj(ti) + error; (1 � i � N):

What choice of fa1; � � � ; am"g" is \best?" If our criterion of \best" is the mean-square error,
we have

0 �
NX
i=1

0
@di � mX

j=1

ajHj(ti)

1
A
2

= Nd2 +
mX
j=1

(a2j � 2ajhj)

= Nd2 �mh2 +
mX
j=1

(aj � hj)
2

where we have used (22) and the orthonormality (18). Evidently, the \best" choice of the
coe�cients is

aj = hj ; (1 � j � m)

and with this best choice the minimum possible mean-square error is given by the Bessel
inequality

d2 � m

N
h2 � 0 (29)

with equality if and only if the approximation is perfect. In other words, (28) becomes
singular somewhere in the parameter space if and only if the model

f(t) =
mX
j=1

AjHj(t)

can be �tted to the data exactly. But in that case we know the parameters by deductive
reasoning, and probability theory becomes super
uous. Even so, probability theory is still
working correctly, indicating an in�nitely greater probability of the true parameter values
than for any others.
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D. An intuitive picture.

This gives us the following intuitive picture of the meaning of equations (25-28). The data
fdj ; � � � ; dNg comprise a vector in an N -dimensional linear vector space SN . The model
equation

di =
mX
j=1

AjHj(ti) + ei; (1 � i � N)

supposes that these data can be separated into a \systematic part" f(ti) and a white
Gaussian \random part" ei. Estimating the parameters of interest f!g that are hidden
in the model functions Hj(t) amounts essentially to �nding the values of the f!g that
permit f(t) to make the closest possible (by the mean-square criterion) �t to the data. Put
di�erently, probability theory tells us that the most likely values of the f!g are those that
allow a maximum amount of the mean-square data
dbar to be accounted for by the systematic term; from (29), those are the values that
maximize h2.

However, we have N data points and only m model functions to �t to them. Therefore,
to assign a particular model is equivalent to supposing that the systematic component of
the data lies only in an m-dimensional subspace Sm of SN . What kind of data should we
then expect?

Let us look at the problem backwards for a moment. Suppose someone knows (never
mind how he could know this) that the model is correct, and he also knows the true values
of all the model parameters (fAg; f!g; �); call this the Utopian state of knowledge U ; but
he does not know what data will be found. Then the probability density that he would
assign to any particular data set D = fd1; � � � ; dNg is just our original sampling distribution
(15):

P (DjU) = (2��2)�
N
2 exp

(
� 1

2�2

NX
i=1

[di � f(ti)]
2

)
:

From this he would �nd the expectations and covariances of the data:

hdii = f(ti) (1 � i � N)

hdidji � hdiihdji = (2��2)�
N
2

Z
dNxxixj exp

"
� 1

2�2

NX
i=1

x2i

#
= �2�ij

therefore he would \expect" to see a value of d2 of about

hd2i =
1

N

NX
i=1

hd2i i

=
1

N

NX
i=1

(hd2i i+ �2)

=
1

N

NX
i=1

f2(ti) + �2;

(30)

but from the orthonormality (18) of the Hj(ti) we have

NX
i=1

f2(ti) =
NX
l=1

mX
j;k=1

AjAkHj(ti)Hk(ti) =
mX
j=1

A2
j :
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So that (30) becomes

hd2i = m

N
A2 + �2:

Now, what value of h2 would he expect the data to generate? This is

hh2i =
1

m

mX
j=1

hh2ji

=
1

m

mX
j=1

2
4 NX
i;k=1

hdidkiHj(ti)Hj(tk)

3
5

=
1

m

mX
j=1

2
4 NX
i;k=1

(hdiihdki+ �2�ik)Hj(ti)Hj(tk)

3
5 :

(31)

But
NX
i=1

hdiiHj(ti) =
NX
i=1

mX
l=1

AlHl(ti)Hj(ti) =
mX
l=1

Al�lj = Aj

and (31) reduces to
hh2i = A2 + �2:

So he expects the left-hand side of the Bessel inequality (29) to be approximately

hd2i � mh2

N
� N �m

N
�2: (32)

This agrees very nicely with our intuitive judgment that as the number of model functions
increases, we should be able to �t the data better and better. Indeed, when m = N , the
Hj(ti) become a complete orthonormal set on SN , and the data can always be �t exactly,
as (32) suggests.

E. A simple diagnostic test.

If � is known, these results give a simple diagnostic test for judging the adequacy of our
model. Having taken the data, calculate (Nd2 � mh2). If the result is reasonably close
to (N � m)�2, then the validity of the model is \con�rmed" (in the sense that the data
give no evidence against the model). On the other hand, if (Nd2 �mh2) turns out to be
much larger than (N �m)�2, the model is not �tting the data as well as it should: it is
\under�tting" the data. That is evidence either that the model is inadequate to represent
the data (we need more model functions), or our supposed value of �2 is too low. The next
order of business would be to investigate these possibilities.

It is also possible, although unusual, that (Nd2�mh2) is far less than (N �m)�2; the
model is \over�tting" the data. That is evidence either that our supposed value of � is too
large (the data are actually better than we expected), or that the model is more complex
than it needs to be. By adding more model functions we can always improve the apparent
�t, but if our model functions represent more detail than is really in the systematic e�ects
at work, part of this �t is misleading: we are \�tting the noise."

A test to con�rm this would be to repeat the whole experiment under conditions where
we know the parameters should have the same values as before, and compare the parameter
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estimates from the two experiments. Those parameters that are estimated to be about the
same in the two experiments are probably real systematic e�ects. If some parameters are
estimated to be quite di�erent in the two experiments, they are almost surely spurious: i.e.
not real e�ects but only artifacts of �tting the noise. The model should then be simpli�ed,
by removing the spurious parameters.

Unfortunately, a repetition is seldom possible with geophysical or economic time series,
although one may split the data into two parts and see if they make about the same
estimates. But repetition is usually easy and standard practice in the controlled environment
of a physics experiment. Indeed, the physicist's common-sense criterion of a real e�ect is
its reproducibility. Probability theory does not con
ict with good common-sense judgment;
it only sharpens it and makes it quantitative. A striking example of this is given in the
scenario below.

Consider now the case that � is completely unknown, where probability theory led us to
(28). As we discussed in Section II, integrating � out of the problem as a nuisance parameter
is much like estimating � from the data, and using that estimate in our equations; if � is
actually well determined by the data, the two procedures are essentially equivalent. We can
see what estimate of � is being made in (28) by comparing it to (27). Using the fact that
if x� 1 and N � 1, (1� x)�N � exp(Nx), (28) is crudely approximated by

P (f!gjD; I)� exp

(
N �m

2

mh2

Nd2

)

which corresponds to (27) with the variance �2 replaced with the estimate given by

(�2)est =
N

N �m
d2 =

1

N �m

NX
i=1

d2i : (33)

In e�ect, probability theory tells us that we should suppose the �rstm degrees of freedom
to be �t by the m model functions, and apportion the observed

P
d2i to the remaining

(N �m) noise degrees of freedom. But this approximation is good only when (N �m)� 1
and mh2 � Nd2; i.e. there are many noise degrees of freedom and the �t to the data is
poor. We shall presently �nd the exact mean value estimate of �2, which turns out to be
[equations (40), (41)]

h�2i = N

N �m� 2

 
d2 � mh2

N

!
(34)

and agrees with (33) in this limit.
More interesting is the opposite extreme when (28) approaches a singular value. Con-

sider the following scenario. You have obtained some data which are recorded automatically
to six �gures and look like this: D = fd1 = 1:42316; d2 = 1:50977; d3 = 1:59638; � � �g. But
you have no prior knowledge of the accuracy of those data; for all you know, � may be as
large as 0:1 or even larger, making the last four digits garbage. But you plot the data, to
determine a model function that best �ts them. Suppose, for simplicity, that the model
function is linear: di = a+si+ei. On plotting di against i, you are astonished and delighted
to see the data falling exactly on a straight line (i.e. to within the six �gures given). What
conclusions do you draw from this?

Intuitively, one would think that the data must be far \better" than had been thought;
you feel sure that � < 10�5, and that you are therefore able to estimate the slope s to an
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accuracy considerably better than �10�5, if the amount of dataN is large. It may, however,
be hard to see at �rst glance how probability theory can justify this intuitive conclusion
that we draw so easily.

But that is just what (28) and (34) tell us; Bayesian analysis leads us to it automatically
and for any model functions. Even though you had no reason to expect it, if it turns out that
the data can be �t almost exactly to a model function, then from the Bessel inequality (29)
it follows that �2 must be extremely small and, if the other parameters are independent,
they can all be estimated almost exactly.

IV. ESTIMATING THE NUISANCE PARAMETERS.

When the models had been rewritten in terms of these orthonormal model functions we were
able to remove the nuisance parameters fAg and �. The integrals performed in removing
the nuisance parameters were all Gaussian; therefore, one can always compute the moments
of these parameters.

There are a number of reasons why these moments are of interest: the �rst moments
of the amplitudes are needed if one intends to reconstruct the original model function f(t);
the second moments are related to the energy carried by the signal; the estimated noise
variance �2 and the energy carried by the signal can be used to estimate the signal-to-noise
ratio of the data. Thus the parameters fAg and � are not entirely \nuisance" parameters;
it is of some interest to estimate them.

A.The expected amplitudes fhAjig.

To begin we will compute the expected amplitudes hAji in the case where the variance is
assumed known. Now the likelihood (23) is a function of the f!g parameters and to estimate
the hAji independently of the f!g's, we should integrate over these parameters. Because
we have not speci�ed the model functions we cannot do this once and for all. But we can
obtain the estimated hAji as functions of the f!g parameters. This gives us what would
be the \best" estimate of the amplitudes if we knew the f!g parameters. The expected
amplitudes are given by

hAj(f!g)i =

Z +1

�1

dA1 � � �dAmAjL(f!g; A; �)Z +1

�1

dA1 � � �dAmL(f!g; A; �)
:

We will carry out the �rst integration in detail to illustrate the procedure, and later just
give results. Using the likelihood (23) and having no prior information about Aj we assign
a uniform prior and integrate over the fAjg. Because the joint likelihood is a product of
their independent likelihoods, all of the integrals except the one over Aj cancel:

hAj(f!g)i =

Z +1

�1

dAjAj exp

�
� 1

2�2

h
A2
j � 2Ajhj

i �
Z +1

�1

dAj exp

�
� 1

2�2

h
A2
j � 2Ajhj

i� :
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A simple change of variables uj = (Aj � hj)
p
2�2 reduces the integrals to

hAj(f!g)i =

Z +1

�1

duj
np

2�2uj + hj
o
exp[�u2]Z +1

�1

duj exp[�u2]
:

The �rst integral in the numerator is zero by symmetry and the second gives

hAj(f!g)i = hj(f!g): (35)

This is the result one would expect. After all, we are expanding the data on an orthonormal
set of vectors. The expansion coe�cient is just the projection of the data onto the expansion
vectors and that is what we �nd.

We can use these expected amplitudes hAji to calculate the expectation values of the
amplitudes hBki in the nonorthonormal model. Using (21), these are given by

hBk(f!g)i =
mX
j=1

hjejkp
�j

:

Care must be taken in using this formula, because the dependence of the hBki on the f!g
is hidden. The functions hj , the eigenvectors ekj and the eigenvalues �j are all functions of
the f!g parameters. If one wishes to integrate over the f!g parameters to obtain the best
estimate of the Bk , then the integrals must be done over hBk(f!g)i times the probability
density of the f!g parameters, including the Jacobian (20).

We would like to compute hAji when the noise variance �2 is unknown to see if obtaining
independent information about � will a�ect these results. To do this we need the likelihood
L(fAg; f!g); as a function of fAg and f!g this is given by

L(f!g; fAg)/
"
d2 � mh2

N
+

1

N

mX
i=1

(Aj � hj)
2

#
�
N
2

: (36)

Using equation (36) and repeating the calculation for hAji one obtains the same result.
Apparently it does not matter if we know the variance or not. We will make the same
estimate of the amplitudes regardless. As with some of the other results discovered in this
calculation, this is what one's intuition might have said; knowing � a�ects the accuracy of
the estimates but not their actual values. Indeed, the �rst moments were independent of
the value of � when the variance was known; it is hard to see how the �rst moments could
suddenly become di�erent when it is unknown.

B. The second posterior moments fhAjAkig.

The second posterior moments hAjAki cannot be independent of the noise variance �2, for
that is what limits the accuracy of our estimates of the Aj . The second posterior moments
when the variance is assumed known are given by

hAjAki =

Z +1

�1

dA1 � � �dAmAjAkL(f!g; fAg; �)Z +1

�1

dA1 � � �dAmL(f!g; fAg; �)
:
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Performing the integrals gives

hAjAki = hjhk + �2�jk (37)

or, in view of (35), the posterior covariances are

hAjAki � hAjihAki = �2�jk :

The Aj parameters are uncorrelated [we de�ned the model functions Hj(t) to ensure this],
and each one is estimated to an accuracy ��. Intuitively, we might anticipate this but we
would not feel very sure of it.

The expectation value hAjAki may be related back to the expectation value for the
original model amplitudes by using equation (22):

hBkBli � hBkihBli = �2
mX
i=1

eikeil
�i

: (38)

These are the explicit Bayesian estimates for the posterior covariances for the original model.
These are the most conservative estimates (in the sense discussed before) one can make.

We can repeat these calculations for the second posterior moments in the case when �
is assumed unknown to see if obtaining explicit information about � is of use. Of course,
we expect the results to di�er from the previous result since (38) depends explicitly on �.
Performing the required calculation gives

hAjAki = hjhk +

�
N

N � 2

��
2N � 5

2N � 5� 2m

��
2N � 7

2N � 7� 2m

� 
d2 � mh2

N

!
�jk :

Comparing this with (37) shows that obtaining independent information about � will a�ect
the estimates of the second moments.

C. The power spectral density fp̂(f!g)g.

Although not explicitly stated, we have calculated an estimate of the total energy of the
signal. The estimated total energy of the signal is just

Phf2(ti)i, which in our orthonormal
model is given by hPA2

j i. Now we have computed this expectation value as a function of
the f!g parameters. We would like to express the total energy carried as a density. This is
easily done, the power spectral density p̂(f!g) is given by

p̂(f!g) =
h
m�2 +mh2

i P (f!gjDI�)Z
df!gP (f!gjDI�)

: (39)

This function is the estimated energy carried by the signal (not the noise) per unit f!g.
That term of m�2 in (39) might be a little disconcerting to some; if (39) estimates the

energy carried by the \signal" why does it include the noise power �2? If h2 � �2 then
the term is of no importance. But in the unlikely event h2 � �2, then what is this term
telling us? When these equations were formulated we essentially put in the fact that there
is present noise of variance �2 and a signal in a subspace of m model functions. But then
if h2 � �2, there is only one explanation: the noise is such that its components on those m
model functions just happened to cancel the signal. But if the noise just cancels the signal,
the power carried by the signal must be equal to the power m�2 carried by the noise in
those m functions; and that is exactly the answer one obtains. This is an excellent example
of the sophisticated subtlety of Bayesian analysis.
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D. The estimated variance �.

One of the things that is of interest in an experiment is to estimate the noise power �2. We
can obtain the expected value of � as a function of the f!g parameters; however, we can
just as easily obtain hsigmasi for any power s. Using equation (25), and the Je�reys prior
1=� we integrate:

h�si =

Z +1

0

d�

�
�sL(f!g; �)Z +1

0

d�

�
L(f!g; �)

to obtain

h�si = �

�
N �m� s

2

�
�

�
N �m

2

�
�1
(
N

2

"
d2 � mh2

N

#) s
2

: (40)

For s = 2 this gives the estimated variance as

h�2i = N

N �m� 2

"
d2 � mh2

N

#
: (41)

The estimate depends on the numberm of expansion functions used in the model. The more
model functions we use the smaller the last factor in (41), because by the Bessel inequality
(29) the larger models �t the data better and (d2 �mN�1h2) decreases. But this should
not decrease our estimate of �2 unless that factor decreases by more than we would expect
from �tting the noise. The factor N=(N �m� 2) takes this into account; another example
of sophisticated subtlety.

E. The estimated signal-to-noise ratio.

These results may be used to estimate the signal-to-noise ratio of the data. We de�ne this
as the square root of the (power carried by the signal) divided by the (mean power carried
by the noise):

Signal

Noise
=

2
4h mX

j=1

A2
j iN�2

3
5

1

2

:

This may be obtained from equations (37)

Signal

Noise
=

(
m

N

"
1 +

h2

�2

#) 1

2

: (42)

A similar signal-to-noise ratio may be obtained when the noise variance � is unknown by
replacing � in (44) by the estimated noise variance (42).

V. SPECTRAL ESTIMATION.

The previous sections surveyed the theory in generality. In this section we will specialize
the analysis to frequency and spectrum estimates. Our ultimate aim is to derive explicit
Bayesian estimates of the power spectrum and other parameters when multiple nonstation-
ary frequencies are present. We will do this by proceeding through several stages beginning
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with the simplest spectrum estimation problem. We do this because as was shown by Jaynes
[2] when multiple, well-separated frequencies are present [j!j�omegakj � 2�=N ], the spec-
trum estimation problem essentially separates into independent single-frequency problems.
It is only when multiple frequencies are close together that we will need to use more general
models.

A. The Simple Harmonic Spectrum.

The simplest frequency estimation problem one can discuss is the single frequency problem
presented in Section II. For this problem, when the data are uniformly sampled in time the
model can be written

f(t) = B1 cos!l+ B2 sin !l

where l is an index running over a symmetric time interval (�T � l � T ) and (2T+1 = N).
The matrix gij becomes

gij =

2
66664

l=TX
l=�T

cos2 !l
l=TX
l=�T

cos!l sin!l

l=TX
l=�T

cos!l sin!l
l=TX
l=�T

sin2 !l

3
77775 :

For uniform time sampling the o� diagonal terms are zero and the diagonal term may be
summed explicitly to obtain

gij =

�
c

0
0
s

�

where c and s are given by

c =
N

2
+
sin(N!)

2 sin(!)

s =
N

2
� sin(N!)

2 sin(!)
:

Then the orthonormal model functions may be written as

H1(t) =
cos(!t)p

c

H2(t) =
sin(!t)p

s
:

The posterior probability of a frequency ! in a uniformly sampled data set, independent of
the signal amplitude, and phase, and the noise level, is given by equation (28). Substituting
these model functions gives this as

P (!jD; I)/
"
1� P (!)2=c+Q(!)2=s

Nd2

# 2�N
2

(43)

where P (!) and Q(!) are the squares of the real and imaginary parts of the discrete Fourier
transform (7,8). Notice, when N � 1 the normalization constants c and s reduce to N=2
and (43) reduces to equation (13) found earlier.
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We would like to use the posterior probability to derive an estimate of the power spectral
density p̂(!). We caution the reader again that the terms \power spectrum" or \spectral
density" are used in the literature with several di�erent meanings. Our meaning was de�ned
previously as the expected power, over the joint posterior probability distribution of all the
parameters, carried by the signal (not the noise), during the observation time. We made such
an estimate in Section IV, but those estimates assumed the noise variance �2 was known.
When the variance is unknown, the desired quantity is easily obtained from equation (39)

p̂(!) �
"
P 2(!)

c
+
Q2(!)

s

#
P (!jD; I)Z
d! P (!jD; I)

where we have dropped a term which is essentially the estimated variance of the noise. The
estimated variance term can be neglected provided it is small compared to maximum of h2.
This will occur whenever

PhA2
ji � �2. In practice this approximation is good when one

has a few hundred data points and a signal-to-noise ratio larger than about one. But if the
number of data points is large, then this equation can be further simpli�ed to obtain

p̂(!) = C(!)
d!P (!jD; I)Z
d! P (!jD; I)

(44)

P (!jD; I) �
�
1� 2C(!)

Nd2

� 2�N
2

:

InN is large P (!jD; I) is e�ectively a delta function; the peak value of c(!) is approximately
the total energy carried by the signal.

To obtain a better understanding of the use of this power spectral estimate, we have
prepared an example: the data consist of a single harmonic frequency plus Gaussian white
noise, Fig. 2. We generated these data from the following equation

dj = 0:001 + cos(0:3j + 1) + ej

where j is a simple index running over the symmetric interval �T to T in half integer steps
(2T+1 = 512), and ei was a Gaussian distributed random number with unit variance. After
generating the time series we computed its average value and subtracted it from each data
point: this insures the data have zero mean value. Figure 2(A) is a plot of this computer
simulated time series, Fig. 2(B) is a plot of the Schuster periodogram (continuous curve)
with the discrete Fourier transform marked with open circles. The periodogram and the
discrete Fourier transform have spurious side lobes, but these do not appear in the plot of
the power spectral density Fig. 2(C) because, the processing in (39) will e�ectively suppress
all but the very highest peak in the periodogram. This just illustrates numerically what
we already knew analytically; it is only the very highest part of the periodogram that is
important for estimation of a single frequency.

We have included a Blackman-Tukey spectrum estimate (dotted line) in Fig. 2(C) for
comparison. The dotted line is a Blackman-Tukey spectrum using a Hanning window. The
Blackman-Tukey spectrum has removed the side lobes at the cost of half the resolution in
the discrete Fourier transform. The maximum lag was set at 256, i.e. over half the data.
Had we used a lag of one-tenth as Tukey [3] advocates, the Blackman-Tukey spectrum would
look nearly like a horizontal straight line on the scale of this plot.
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Figure 2: Single Frequency Estimation

THE TIME SERIES PERIODOGRAM/FOURIER TRANSFORM

The data Fig. 2(A) contain a sin-
gle harmonic frequency plus noise.
There are 512 data points in the sig-
nal with S=N � 1. The Schuster
periodogram, Fig. 2(B) solid curve,
and the discrete Fourier transform,
open circles, clearly show a sharp peak
plus side lobes. These side lobes do
not show up in the power spectral
density, Fig. 2(C), because p̂(!) �
2C(!)P (!jDI); the normalized poste-
rior probability is very sharply peaked
around the maximum of the peri-
odogram. The dotted line in Fig. 2(C)
is a Blackman-Tukey spectrum with
a Hanning window and 256 lag coef-
�cients. If we had used a 1/10 lag
as Tukey suggested the BT spectrum
would have been nearly a 
at line of
this scale.

THE POWER SPECTRAL DENSITY

AND BT SPECTRAL ESTIMATE
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Of course, the peak of the periodogram and the peak of the power spectral density occur
at the same frequency. Indeed, for a simple harmonic signal the peak of the periodogram is
the optimum frequency estimator. But in our problem (i.e. our model), the periodogram is
not even approximately a valid estimator of the power spectrum, as Schuster supposed it to
be. Consequently, even though these techniques give nearly the same frequency estimates,
they give very di�erent power spectral estimates.

B. The Simple Harmonic Signal with Lorentzian Decay.

The simple harmonic frequency problem just discussed may be generalized easily to include
Lorentzian or Gaussian decay. We assume, for this discussion, that the decay is Lorentzian
the generalization to other types of decay will become more obvious as we proceed. For a
uniformly sampled interval the model we are considering is

f(l) = [ B1 cos(!l) + B2 sin(!l)]e
��l (45)

where l is restricted to values (1 � l � N). We now have four parameters to estimate: the
amplitudes B1, B2; the frequency !; and the decay rate �. The solution to this problem is
a straight forward application of the general procedures. The matrix gij (16) is given by

gij =

2
66664

NX
l=1

cos2(!l)e�2�l
NX
l=1

cos(!l) sin(!l)e�2�l

NX
l=1

cos(!l) sin(!l)e�2�l
NX
l=1

sin2(!l)e�2�l

3
77775 :

These sums may be done explicitly or approximated in any number of ways. We will
approximate them as follows:

c �
NX
l=1

cos2(!l)e�2l� �
NX
l=1

sin2(!l)e�2l� � 1

2

NX
l=1

e�2l� =
1

2

"
1� e�2N�

e2� � 1

#
: (46)

The o� diagonal terms are at most the same order as the ignored terms; these terms are
therefore ignored. The matrix gij can be written as

gij �
�
c

0
0
c

�
:

The orthonormal model functions may then be written as

H1(l) = c�
1

2 cos(!l)e��l (47)

H2(l) = c�
1

2 sin(!l)e��l (48)

The projections of the data onto the orthonormal model functions (24) are given by

h1 � c�
1

2P (!; �) = c�
1

2

NX
l=1

dl cos(!l)e
��l

h2 � c�
1

2Q(!; �) = c�
1

2

NX
l=1

dl sin(!l)e
��l
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and the posterior probability of a frequency ! and a decay rate � is given by

P (!; �jDI) /
"
1� P (!; �)2 + Q(!; �)2

Ncd2

# 2�N
2

: (49)

This approximation is valid provided there is plenty of data N � 1, and there is no evidence
of a low frequency, there is no restriction on the range of �: if � > 0 the signal is decaying
with increasing time, if � < 0 the signal is growing with increasing time, and if � = 0 the
signal is stationary. This equations is exactly analogous to (13) and reduces to (43) in the
limit �! 0.

We would like to derive an estimate of the accuracy of the frequency and decay parameter
estimates. To do this we can approximate the probability distribution P (!; �jD; I; �) by a
Gaussian. This may be done readily by assuming a form of the data, and then expanding
h2 around the maximum of the probability distribution (49) as was done in Section II. From
the second derivative we may obtain the desired (mean) � (standard deviation) estimates.
We take as the data

d(t) = A1 cos(ŵt)e
��̂t (50)

where ŵ is the true frequency of oscillation and �̂ is the true decay rate. We have assumed
only a cosine component to e�ect some simpli�cations in the discussion. It will be obvious
at the end of the calculation that the result for an arbitrary signal phase can be obtained
by replacing the amplitude A2

1 by the squared magnitude A2 � A2
1 + A2

2.
The projection of the data (50) onto the model functions (47, 48) is:

h1 =
A1

2
p
c

(
NX
l=1

cos(! � ŵ)le�(�+�̂)l +
NX
l=1

cos(! + ŵ)le�(�+�̂)l
)

and h2 � h1 and is ignored. The sums may be done explicitly using (46) to obtain

h1 =
A1

4
p
c

(
1� e�2Nv

e2v � 1
+

1� e�2Nu

e2u � 1

)

where

v =
�+ �̂ � i(! � ŵ)

2
and u =

� + �̂+ i(! � ŵ)

2
;

and i =
p�1 in the above equations. Then the su�cient statistic h2 is given by:

h2 =
A2
1

16

"
e2� � 1

1� e�2N�

#"
1� e�2Nv

1� e2v
+

1� e�2Nu

1� e2u

# 2

The region of the parameter space we are interested in is where the unitless decay rate is
small compared to one, and exp(N�̂) is large compared to one. In this region the true
signal decays away in the observation time, but not before we obtain a good representative
sample of it. We are not considering the case were the decay is so slow that the signal is
nearly stationary, nor are we considering the case were the decay is so strong that the signal
is gone within a small fraction of the observation time. Within these limits the su�cient
statistic h2 is

h2 � A2
1�

4

�
�+ �̂

(�+ �̂)2 + (! � ŵ)2

�2
:
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The �rst derivatives of h2 evaluated at ! = ŵ and � = �̂ are zero, as they should be.
The mixed second partial is also zero. This gives the second derivatives of h2 as 

@2h2

@!2

!
!=ŵ

= � A2
1

4�̂3
and

 
@2h2

@�2

!
�=�̂

= � A2
1

32�̂3
:

We can now expand h2 in a Taylor series about the maximum and normalizing the distri-
bution gives

P (!�jD; I; �)� (4��!��)
�1 exp

"
�(! � ŵ)2

2�2!
� (�� �̂)2

2�2�

#

(�)est = �̂ � �� and (!)est = ŵ� �!

where

�� � 5:6��̂
3

2

A1
and �! � 2��̂

3

2

A1
(51)

The accuracy estimate �� for the decay parameter is almost a factor of 3 worse than the
estimate �! for the frequency. This result has been noted before but why it should be so
was not understood. Our independent probability analysis clearly indicates that this must
be the case.

How does this compare to the results obtained for the simple harmonic frequency?
Converting to Hertz involves dividing these by 2��t, for a signal with N = 1000, �̂ = 0:01,
A1=

p
2� = 1 and, including a factor of 2 to obtain the values at the full-width at half

maximum we have the estimated accuracy for frequency and decay as

! = ŵ� 0:9Hz and � = �̂ � 2:5Hz:

This compares to 0:025Hz for a stationary signal with the same signal-to-noise ratio. This

is a factor of 36 times larger and since the error varies like N
�3

2 we have e�ectively lost all
but one tenth of the data. When we have reached the unitless time of t = 100 the signal is
down by a factor of 2.7 and has all but disappeared into the noise.

We wish to plot the power spectral estimate as a function of frequency and decay. These
are given by

p̂(!) � m

Z
d�h2P (!; �jD; I)Z
d�d!P (!; �jD; I)

(53)

p̂(�) � m

Z
d!h2P (!; �jD; I)Z
d�d!P (!; �jD; I)

(54)

where P (!; �jD; I) is taken from (28) using (45) as the model: then, p̂(!) is useful for esti-
mating the frequency; and p̂(�) is useful for estimating the decay rate. These integrals can
be computed numerically. The computer code used to evaluate the \student t-distribution"
in this paper (in fact in all of the examples in this work) is included in Appendix A. This
appendix contains a general routine for evaluating the \student t-distribution" (28), the
orthonormal amplitudes (36), the power spectral density (39), and the estimated variance
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(40) with s = 1. In addition there is an example of how to use this subroutine in Appendix
B. In this power spectral estimate (53,54) (and in the computer code) we have assumed the
estimated noise variance �2 is small compared to h2 and have ignored this term.

To illustrate some of these points we have prepared another example, Fig. 3. This time
series was prepared from the following equation

dj = 0:001 + cos(0:3j + 1)e�0:01j + ej :

The N = 512 data samples were prepared in the following manner: �rst, we generated
the data without the noise; we then computed the average of the data, and subtracted it
from each data point, thus to ensure that the average value of the data was zero; we then
repeated this process on the Gaussian white noise; next, we computed the average mean-
square of the signal and the noise; and scaled the data by the appropriate ratio to make the
signal-to-noise ratio of the data exactly one; last, we added the noise to the data. The time
series clearly shows a small signal which rapidly decays away, Fig. 3(A). Figure 3(B), the
periodogram (continuous curve) and the discrete Fourier transform (open circles) clearly
show the Lorentzian line shape. The noise is now signi�cantly a�ecting the periodogram:
the periodogram is no longer an optimum frequency estimator.

Figures 3(C) and 3(D) contain plots of the power spectral density (53, 54). In Fig. 3(C)
we have treated the frequency as a nuisance parameter and have integrated it out; as was
emphasized earlier this is essentially the posterior probability distribution for � normalized
to a power level rather than to unity. In Fig. 3(D) we have treated the decay as the nuisance
parameter and have integrated it out. This gives the power spectral estimate as a function
of frequency.

The width of these curves is a measure of the uncertainty in the determination of the
these parameters. We have determined full-width at half maximum (numerically) for each
of these and have compared these to the theoretical \best" estimates (51) and �nd

(!)est = 0:2998� 5:3� 10�4 and (!)bestt = 0:3000� 3� 10�4;

(�)est = 0:0109� 5:5� 10�4 and (�)best = 0:0100� 8� 10�4:

Converting to Hz, 5:3�10�4=2�N = 0:84 Hz. The frequency estimate compares nicely with
the \best" estimate, while our decay estimate is a little better. Given that the theoretical
estimates were only approximations they are in good agreement with each other.

C. The Spectrum of Two Harmonic Frequencies.

We now turn our attention to the slightly more general problem of analyzing a data set which
we postulate contains two distinct harmonic frequencies. The \student t-distribution" rep-
resented by equation (28) is, of course, the general solution to this problem. Unfortunately,
that equation does not lend itself readily to understanding the probability distribution. In
particular we would like to know what the behavior of these equations are in three di�er-
ent limits: �rst, when the frequencies are well separated; second, when they are close but
distinct; and third, when they are so close as to be, for all practical purposes, identical. To
investigate these we will solve, approximately, the two frequency problem.

The model equation for the two frequency problem is a simple generalization of the
single harmonic problem:

f(t) = B1 cos(!1t) +B2 cos(!2t) +B3 sin(!1t) +B4 sin(!2t):
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Figure 3: Single Frequency with Lorentzian Decay

TIME SERIES SCHUSTER PERIODOGRAM

POWER SPECTRAL DENSITY

AS A FUNCTION OF DECAY RATE

POWER SPECTRAL DENSITY

AS A FUNCTION OF FREQUENCY

The data Fig. 3(A) contain a simple frequency with a Lorentzian decay plus noise. In
Fig. 3(B), the noise has signi�cantly distorted the periodogram (continuous curve) and the
fast Fourier transform (open circles). The power spectral density may be computed as a
function of decay rate � by integrating over the frequency Fig. 3(C), or as a function of
frequency ! by integrating over the decay Fig. 3(D).

32



The model functions can then be used to construct the gjk matrix. On a uniform grid this
is given by

gjk =

2
664
C11

C12

0
0

C12

C22

0
0

0
0
S11
S12

0
0
S12
S22

3
775

where

Cjk =
TX

l=�T

cos(!jl) cos(!kl) =
sin(12N!+)

2 sin(12!+)
+
sin(12N!�)

2 sin(12!�)

Sjk =
TX

l=�T

sin(!jl) sin(!kl) =
sin(12N!�)

2 sin(12!�)
� sin(12N!+)

2 sin(12!+)

w+ = !j + !k; (j; k = 1 or 2)

w� = !j � !k :

The eigenvalue and eigenvectors problem for gjk splits into two separate problems each
involving 2� 2 matrices. The eigenvalues are

�1&2 =
C11 + C22

2
�
q
(C11 � C22)2 + 4C2

12

�3&4 =
S11 + S22

2
�
q
(S11 � S22)2 + 4S2

12:

We can go on and obtain the exact solution to this problem but that will not be necessary.
When the frequencies are well separated j!1 � !2j � 2�=N , the eigenvalues reduce to
� = N=2. That is, gjk goes into N=2 times the unit matrix. Then each of the model

equations are e�ectively orthogonal and the su�cient statistic h2 reduces to

h2 =
2

N
[C(!1) + C(!2)] ;

and the probability, when the variance is known, is given by

P (!1!2jD; I; �)/ exp

�
C(!1) + C(!2)

�2

�
: (55)

The problem has separated: one can estimate each of the frequencies separately. The
maximum of the two frequency posterior probability density will be located at the two
greatest peaks in the periodogram, in agreement with the common sense usage of the Fourier
transform. A similar result holds for the general frequency estimation problem. Then the r
frequencies, corresponding to the maximum of the joint posterior probability, are essentially
the estimates obtained from the r biggest peaks in the periodogram [2].

The labels !1, !2, etc. for the frequencies in the model are arbitrary, and accordingly
their joint probability density is invariant under permutations. That means, for the two
frequency problem, there is an axis of symmetry running along the line !1 = !2. We do
not know from (55) what is happening along that line. This is easily investigated when
!1 = !2 � !: the eigenvalues become

�1 = N; �2 = 0; �3 = N; �4 = 0:
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The matrix gjk has two redundant eigenvalues, and the probability distribution becomes

P (!jD; I; �)/ exp

�
C(!)

�2

�
: (56)

The probability density goes smoothly into the single frequency probability distribution
along this axis of symmetry. Given that the two frequencies are equal, our estimate of them
will be identical, in value and accuracy, to those of the one frequency case.

The problem of understanding the posterior probability density when there are two close
but distinct frequencies must now be addressed. The matrix gjk for this two frequency prob-
lem is readily diagonalized and the exact solution for the two frequency problem obtained.
An approximate solution may be obtained that is valid in the same sense that the approx-
imate solution to the single frequency problem obtained in Section II is valid. To obtain
this approximate solution one needs only to examine the matrix gjk and notice that the
elements of this matrix consist of the diagonal elements given by:

C11 =
N

2
+
sin(N!1)

2 sin(!1)
� N

2
;

C22 =
N

2
+
sin(N!2)

2 sin(!2)
� N

2
;

S11 =
N

2
� sin(N!1)

2 sin(!1)
� N

2
;

S22 =
N

2
� sin(N!2)

2 sin(!2)
� N

2
;

and the o� diagonal elements. The o� diagonal terms are small compared to N unless
the frequencies are speci�cally in the region of !1 � !2, then only the terms involving the
di�erence (!1 � !2) are large. We can approximate the o� diagonal terms as:

C12 � S12 � 1

2

TX
l=�T

cos
1

2
(!1 � !2)l =

1

2

sin 1
2N(!1 � !2)

sin 1
2(!1 � !2)

� B

2
: (57)

When the two frequencies are well separated, (57) is of order one and is ignorable. When
the two frequencies are nearly equal, then the o� diagonal terms are large and are given
accurately by (57). So the approximation is valid for all values of !1 and !2.

With this approximation for gjk it is now possible to write a simpli�ed solution for the
two frequency problem. The matrix gjk (16) is given approximately by

gjk =
1

2

8>><
>>:
N

B
0
0

B

N
0
0

0
0
N

B

0
0
B

N

9>>=
>>; :

The orthonormal model functions (17) may now be constructed:

H1(t) =
1p

N +B
fcos(!1t) + cos(!2t)g ; (58)
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H2(t) =
1p

N �B
fcos(!1t)� cos(!2t)g ;

H3(t) =
1p

N +B
fsin(!1t) + sin(!2t)g ;

H4(t) =
1p

N �B
fsin(!1t)� sin(!2t)g :

We can now write the su�cient statistic h2 in terms of these orthonormal model functions
to obtain

h2 = h2+ + h2
�
;

h2+ �
1

4(N + B)

n
[P (!1) + P (!2)]

2 + [Q(!1) + Q(!2)]
2
o
;

h2
�
� 1

4(N � B)

n
[P (!1)� P (!2)]

2 + [Q(!1)� Q(!2)]
2
o
;

where P and Q are the sine and cosine transforms of the data as functions of the appropriate
frequency. The factor of 4 comes about because for this problem there are m = 4 model
functions. Using (26), the posterior probability that two distinct frequencies are present,
given the noise variance �2, is

P (!1; !2jD; I; �)/ exp

"
2h2

�2

#
: (59)

A quick check on the asymptotic forms of this will verify that when the frequencies are
well separated one has h2 = 1

2 [C(!1) + C(!2)], and it has reduced to (55) and, when the
frequencies are the same the second term goes smoothly to zero, and the �rst term goes
into 1

2C(!), to reduce to (56) as expected.
When the frequencies are very close or far apart we can apply the results obtained by

Jaynes
Jaynes chirp
concerning the accuracy of the frequency estimates:

(!est) = (!max)� �

A

q
48=N3: (60)

In the region where the frequencies are close but distinct, (59) appears very di�erent. We
would like to understand what is happening in this region, in particular we would like to
know just how well two close frequencies can be estimated. To understand this we will
construct a Gaussian approximation similar to what was done for the case with Lorentzian
decay. We Taylor expand the h2 in (59) to obtain

P (!1; !2jD; I; �)� exp

 
�(!1 � ŵ1)2

2r2�2
� (!2 � ŵ2)2

2s2�2
� (!1 � ŵ1)(!2 � ŵ2)

2u2�2

!
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where
1

r2
= �@

2h2

@!2
1

�����!1 = ŵ1

!2 = ŵ2

1

s2
= �@

2h2

@!2
2

�����!1 = ŵ1

!2 = ŵ2

1

u2
= � @2h2

@!1@!2

�����!1 = ŵ1

!2 = ŵ2

where ŵ1, ŵ2 are the locations of the maxima of (59). If we have a uniformly sampled signal
of the form

fl = b̂1 cos(ŵ1l) + b̂2 cos(ŵ2l) + b̂3 sin(ŵ1l) + b̂4 sin(ŵ2l) + el (61)

where �T � l � T , 2T + 1 = N , and b̂1, b̂2, b̂3, b̂4 are the true amplitudes, ŵ1, ŵ2 are the
true frequencies, and et � the signal, then h1 is given by the projection of H1 (58) onto
the data (61) to obtain

h1 =
1p

N +B(!1; !2)

TX
l=�T

cos(!1l) + cos(!2l)fl

where
B(!1; !2)

2
� 1

2

TX
l=�T

cos(!1 � !2)l =
1

2

sin 1
2N(!1 � !2)

sin 1
2(!1 � !2)

(62)

For uniform time series these hj may be summed explicitly using equation (62) to obtain

h1 =
1

2
p
N +B(!1; !2)

n
b̂1[B(ŵ1; !1) + B(ŵ1; !2)] + b̂2[B(ŵ2; !1) + B(ŵ2; !2)]

o

h2 =
1

2
p
N �B(!1; !2)

n
b̂1[B(ŵ1; !1)� B(ŵ1; !2)] + b̂2[B(ŵ2; !1)� B(ŵ2; !2)]

o

h3 =
1

2
p
N +B(!1; !2)

n
b̂3[B(ŵ1; !1) + B(ŵ1; !2)] + b̂4[B(ŵ2; !1) + B(ŵ2; !2)]

o

h4 =
1

2
p
N �B(!1; !2)

n
b̂3[B(ŵ1; !1)� B(ŵ1; !2)] + b̂4[B(ŵ2; !1)�B(ŵ2; !2)]

o
:

We have kept terms corresponding to the di�erences in the frequencies. When the frequen-
cies are close together it is only these terms which are important: the approximation is
consistent with the others made.

The su�cient statistic h2 is then given by

h2 =
1

4
(h21 + h22 + h23 + h24): (63)

To obtain a Gaussian approximation for (59) one must calculate the second derivative of
(63) with respect to !1 and !2. The problem is simple in principle but di�cult in practice.
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To get these partial derivatives we Taylor expand (63) around the maximum located at ŵ1

and ŵ2 and then take the derivatives. The intermediate steps are of little concern and were
carried out using an algebra manipulation package. Terms of order one compared to N

were again ignored and, we have assumed the frequencies are close but distinct: we used
the small angle approximations for the sine and cosine at the end of the calculation. The
local variable � [de�ned as (ŵ2� ŵ1)=2 � �=N ] measures the distance between two adjacent
frequencies. If � is � then the frequencies are separated by one step apart in the discrete
Fourier transform. The second partial derivatives of h2 are given by:

@2h2

@!2
1

�����!1 = ŵ1

!2 = ŵ2

� �(b̂21 + b̂23)N
3

 
3 sin2(�)� 6� cos(�) sin(�) + �2[sin2(�) + 3 cos(�)]� �4

48�3[sin(�)� �][sin(�) + �]

!

@2h2

@!2
2

�����!1 = ŵ1

!2 = ŵ2

� �(b̂22 + b̂24)N
3

 
3 sin2(�)� 6� cos(�) sin(�) + �2[sin2(�) + 3 cos(�)]� �4

48�3[sin(�)� �][sin(�) + �]

!

@2h2

@!1@22

�����!1 = ŵ1

!2 = ŵ2

� (b̂1b̂2 + b̂3b̂4)N
3

 
�4 sin(�) + 2�3 cos(�)� 3�2 sin(�) + sin3(�)

16�3[sin(�)� �][sin(�) + �]

!
:

If the true frequencies ŵ1 and ŵ2 are separated by two steps in the discrete Fourier trans-
form, � = 2�, we may reasonably ignore all but the �4 term to obtain

@2h2

@!2
1

�����!1 = ŵ1

!2 = ŵ2

� �(b̂21 + b̂23)N
3

48

@2h2

@!2
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�����!1 = ŵ1

!2 = ŵ2

� �(b̂22 + b̂24)N
3

48

@2h2

@!1@!2

����� !1 = ŵ1

!2 = what2

� �(b̂1b̂2 + b̂3b̂4)N3 sin(�)

16�
:

The accuracy estimates reduce to equation (60) when the frequencies are will separated.
When the frequencies have approximately the same amplitudes and � is order of 2� (the
frequencies are separated by two steps in the discrete Fourier transform) the interaction
term is down by four and one expects the estimates to be nearly the same as those for
a single frequency. Probability theory indicates that two frequencies which are as close
together as two steps in a discrete Fourier transform do not interfere with each other in any
signi�cant way.

To better understand the maximum theoretical accuracy with which two frequencies
can be estimated we have prepared Table 1. To make these estimates comparable to those
obtained in Section II we have again assumed there N = 1000 data points and � = 1.
There are three regions of interest: when the frequency separation is small compared to a
single step in the discrete Fourier transform; when the separation is of order one step; and
when the separation is large. Additionally we would like to understand the behavior when
the signals are of the same amplitude, when one signal is slightly larger than the other,
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and when one signal is much larger than the other. When we prepared this table we used
equation (27), not the \student t-distribution." In order to obtain the \best" theoretical
estimates we did not include any noise in the data [just as noise was not included in (60)].
Had we used the \student t-distribution" the accuracy estimates would have been much
much better. The estimates obtained are the \best" in the sense that in a real data set
with � = 1, containing N = 1000 data points the accuracy estimates one obtains will be,
nearly always, slightly worse than those contained in Table 1.

Table 1

Amplitudes/Description (f̂2 � f̂1) = 0:07 Hz (f̂2 � f̂1) = 0:3 Hz (f̂2 � f̂1) = 5:1 Hz

The square magnitude (f1)est = f̂1 � 0:091 (f1)est = f̂1 � 0:027 (f1)est = f̂1 � 0:025
is equal to signal 1 of
signal 2

(f2)est = f̂2 � 0:091 (f2)est = f̂2 � 0:027 (f2)est = f̂2 � 0:025

The square magnitude (f1)est = f̂1 � 0:091 (f1)est = f̂1 � 0:027 (f1)est = f̂1 � 0:025
of signal 2 is four times
larger than signal 1

(f2)est = f̂2 � 0:088 (f2)est = f̂2 � 0:013 (f2)est = f̂2 � 0:012

The square magnitude (f1)est = f̂1 � 0:091 (f1)est = f̂1 � 0:025 (f1)est = f̂1 � 0:025
of signal 2 is 128 times
larger than signal 1

(f2)est = f̂2 � 0:034 (f2)est = f̂2� 0:002 (f2)est = f̂2 � 0:002

The three values of (!1 � !2) examined correspond to � = 1=4, � = 4, and � = 16:
roughly these correspond to frequency separations of 1=12, 1, and 5 steps in the discrete
Fourier transform. We held the squared magnitude of signal one constant at one and the
second is either 1, 4 or 128 times larger.

When the separation frequency is 0.07 Hz the frequencies are indistinguishable. The
smaller component cannot be estimated accurately. As the magnitude of the second signal
increases the estimated accuracy of the second signal becomes better as one's intuition
would suppose it should (the signal looks more and more like one frequency).

When the separation frequency is 0.3 Hz or about one step in the discrete Fourier
transform, the accuracy estimates indicate that the two frequencies are well resolved. By
this we mean one of the frequencies would have to be moved by eleven standard deviations
before it would be confounded with the other (two parameters are said to be confounded
when probability theory estimates their values to be the same). This is true for all the
amplitudes in the table; it does however, improve with increasing amplitude. According to
probability theory, when two frequencies are as close together as one step in the discrete
Fourier transform those frequencies are clearly resolvable.

When the separation frequency is 5.1Hz, the accuracy estimates clearly determine both
frequencies. Additionally, the accuracy estimates for the smaller frequency are essentially
0:025 Hz which is the same as the estimate for a single harmonic frequency that we found
previously (10). Examining Table 1 more carefully, we see that when the frequencies are
separated by even a single step in the discrete Fourier transform, the accuracy estimates
are essentially those for the single harmonic frequencies. The ability to estimate two close
frequencies accurately is essentially independent of the separation frequency, as long as it
is greater than or approximately equal to one step in the discrete Fourier transform.

To illustrate the two frequency probability density (59) we prepared a simple example,
Fig. 4. This example was prepared from the following equation

di = cos(0:3i+ 1) + cos(0:307i+ 2) + ei
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Figure 4: Two Harmonic Frequencies { The Data

THE DATA

SCHUSTER PERIODOGRAM { DISCRETE FOURIER TRANSFORM

The data, Fig. 4(A), contain two frequencies. They are separated from each other by
approximately a single step in the discrete Fourier transform. The periodogram, Fig. 4(B),
shows only a single peak located between the two frequencies.
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Figure 4: (Continued)

The two-frequency probability density, Fig. 4(C), clearly indicates the presence of two fre-
quencies. The posterior odds ratio prefers the two-frequency model by 107 to 1.
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where ei has variance one and the index runs over the symmetric time interval (�255:5 � i �
255:5) by unit steps. This time series Fig. 4(A) has two simple harmonic frequencies. The
two frequencies are separated by approximately one step in the discrete Fourier transform,
j!1 � !2j � 2�=512.

From looking at the raw time series one might just barely guess that there is more going
on than a simple harmonic frequency plus noise, because the oscillation amplitude seems to
vary slightly. If we were to guess that there are two close frequencies, then by examining
the data one can guess that the di�erence between these two frequencies is not more that
one cycle over the entire time interval. If the frequencies were separated by more than this
we would expect to see beats in the data. If there are two frequencies, the second frequency
must be within 0:012 of the �rst in dimensionless units. This is in the region were the
frequency estimates are almost but not quite confounded.

Now Fig. 4(B) the periodogram (continuous curve) and the discrete Fourier transform
(open circles) show only a single peak. The single frequency model has estimated a frequency
which is essentially the average of the two. The two frequency posterior probability density
Fig. 4(C) show two well resolved, symmetrical maxima. Thus the inclusion of just this one
simple additional fact has greatly enhanced our ability to detect the two signals.

From the contours in Fig. 4(C) it appears that the upper frequency is being determined
more accurately than the lower one. However, to be sure of this we should integrate out
one frequency to see the marginal posterior distribution of the other.

Now that we know the data contain two partially resolved frequencies, we could proceed
to obtain data over a longer time span and resolve the frequencies. Regardless, it is now
clear that what one can detect clearly depends on what question one asks.

D. Multiple nonstationary frequencies estimation.

The general solution to this problem is given by the \student t-distribution." When the
frequencies are harmonic (i.e. no decay or chirp) and well separated (j!j�!k j > 2�=N) the
problem separates into multiple single frequency problems. When more than one frequency
is close (j!j�!kj � 2�=N) we must use a more general model (around the close frequencies).

To understand this problem completely, one must look at the case when there are two
nonstationary frequencies present. We already know the answer to this question: the Fourier
transform would not work for estimating multiple nonstationary frequencies if the estima-
tion problem did not separate. The details for this problem are just a straightforward
generalization to the two frequency problem and we have not included them here.

From what we have learned and from what was shown by Jaynes [2] a procedure for
estimating multiple frequencies can now be given. First, compute the log of the posterior
probability using a model with a single harmonic frequency plus a constant and look for
peaks. If there are r well resolved peaks above the noise level, it is a good bet there are at
least r frequencies present. Second, use a single frequency model (with decay if necessary)
and locate the maximum of each peak in the Fourier transform. Third, use a two frequency
model to examine each peak. The initial frequency estimates should be slightly above and
below (about 1/4 step in the discrete Fourier transform) the location of the peak. If the
peak is a single frequency, the two frequency model will confound it, because it cannot �t
the data any better than does a one frequency model. If the peak is due to two resolvable
frequencies it will �nd the second frequency. Remove any confounded parameters. Fourth,
if one desires to know the \best" estimates of the parameters, then use the estimated values,
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from the preceding steps, as initial guesses in the general problem. Locate the maximum of
the multiple frequency posterior probability distribution. This will improve the estimates
by removing the interference e�ects between them. Then determine the accuracy of the
estimates.

To obtain the accuracy estimates we must compute both h!ji and h!2
j i where !j is one

member of the set of f!g parameters. It might be a frequency, decay, chirp or any other
parameter in the set. Then the estimates are given by

(!j)est = ŵj � �j

where
�j =

q
!2
j � !2

j

and ŵj is the location of the maximum of the \student t-distribution" for parameter !j .
But if the number of parameters in this set is large there is virtually no hope of performing
the integrals represented by h!ji and h!2

j i, either numerically or analytically. We will be
forced to use an approximate result for �j .

We can approximate (27) by a Gaussian if we replace �2 in (27) by its expectation value
(41). We can then Taylor expand to obtain a suitable Gaussian approximation. De�ne the
matrix

Hjk � �m
4

@2

@!j@!k

h2

h�2i
then P (f!gjD; �; I) (27) is approximately given by

P (f!gjD; �; I) = 1

z
exp

0
@ rX

jk=1

Hjk�j�k

1
A

where
�j � !j � ŵj

are just the Taylor expansion variables and z is a normalization constant.
We can transform the variables to an orthogonal set and then perform the r integrals

just as we did with the amplitudes in Section III. These new variables are obtained from
the eigenvalues and eigenvectors of Hjk. Let ujk denote the k'th component of the j'th
eigenvector of Hjk and let vj be the eigenvalue. Then the orthogonal variables are given by

sj =
rX

k=1

�kukj �j =
rX

k=1

skujk :

Making this change of variables we have

P (sjD; �; I) �
rY

k=1

�
vk
�

�1

2

exp

0
@� rX

j=1

s2j

1
A : (64)

From (64) we can compute hsji and hs2j i. The Jacobian is just the determinant jujkj, but
this is one since the transformation matrix ujk is orthogonal. Of course hsji is zero and the
expectation value isjski is given by

hsjski = �jk
2vk
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We can now work backward to obtain the standard deviation for the !j as

h!2
j i � h!ji2 =

rX
k=1

u2kj
2vk

� �2j :

Then the estimated !j parameters are

(!j)est = ŵj � �j (65)

where ŵj is the location of the maximum of the probability distribution as a function of
the parameter !j .

For an arbitrary model the matrix Hjk cannot be calculated analytically; however, it can
be evaluated numerically using the computer code given in Appendix A. We use a general
searching routine to �nd the maximum of the probability distribution and then calculate
this matrix numerically. The log of the \student t-distribution" is so sharply peaked that
gradient searching routines do not work well. We use a \pattern" search routine described
by Hooke and Jeeves [12].

VI. EXAMPLES: APPLICATIONS TO REAL DATA.

The this section is devoted to applications. We will apply these procedures to a number
of time series including NMR signals, economic time series, and Wolf's relative sunspot
numbers. We do this in a e�ort to show how these procedures can be used to obtain
optimal parameter estimates and to show the power and versatility of these methods.

A. NMR time series.

NMR is one of the best examples of how the introduction of modern computing machines
has revolutionized a branch of science. With the aid of computers more data can be taken
and summarized into a useful form faster than has ever been possible before. The standard
way to analyze an NMR experiment is to obtain a quadrature data set, with two separate
measurements, 90� out of phase with each other, and to do a complex Fourier transform on
the data [13].

The global phase of the discrete complex transform is adjusted until the real part (called
an absorption spectrum) is as symmetric as possible. The frequencies and decay rates are
then estimated from the absorption spectrum. There are, of course, good physical reasons
why the absorption spectrum of the \true signal" is important to physicists. However, as we
have emphasized repeatedly since Section II, the discrete Fourier transform is an optimal
frequency estimator only when a single simple harmonic frequency is present.

We will apply the procedures developed in the previous sections to a time series from
a real NMR experiment, and contrast our analysis to the one done using the absorption
spectrum. The NMR data used are of a free-induction decay, [14], Fig. 5. The sample
contained a mixture of 63% liquid Hydrogen-Deuterium (HD) and Deuterium (D2) at
20.2�K. The sample was excited with a 55MHz pulse, and then detected using a standard
mixer-modulation technique. The resulting signal is in the audio range where it has several
oscillations at about 100Hz. The data were sampled at �T = 0:0005 seconds, and N = 2048
samples were taken for each channel. The data therefore, span a time interval of about one
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Figure 5: Analyzing NMR Data

NMR TIME SERIES
CHANNEL 1

PERIODOGRAM OF CHANNEL 1

NMR TIME SERIES
CHANNEL 2

PERIODOGRAM OF CHANNEL 2

Fig. 5(A) and 5(C) are channel one and two of an NMR experiment. The data are a free-
induction decay for a sample containing a mixture of D2 and HD in a liquid phase. Theory
indicates there should be three frequencies in these data: A D2 singlet, and an HD doublet
with a 43Hz separation. The singlet should be approximately in the center of the doublet.
There were 2048 data points in each channel, the data were sampled at 0.0005 seconds. In
the discrete Fourier transform, Fig. 5(B) and 5(D), the singlet appears to be split into a
doublet. This is caused by a non-Lorentzian decay. The envelope for the decay actually
goes negative producing the double peak.
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second. As was discussed earlier we are using dimensionless units. The relation to physical
units are

f =
!

2��T
Hz Period =

2��T

!
Seconds

where f is the frequency in Hertz, ! is the unitless frequency in radians per unit step, and
�T is the sampling time.

In these data there are a number of e�ects which we would like to investigate. First,
the indirect J coupling [15] in the HD produces a doublet with a splitting of about 43Hz.
The D2 in the sample is also excited, its resonance is approximately in the middle of the
HD doublet. One of the things we would like to determine is the shift of this frequency
relative to the center of the HD doublet. In addition to the three frequencies there are two
di�erent characteristic decay times; the decay rate of the HD doublet is grossly di�erent
from that of D2 [15].

However, an inhomogeneous magnetic �eld could mask the true decay: the decay could
be magnet limited. We would like to know how strongly the inhomogeneous magnetic �eld
has a�ected the decay.

The analysis we did in Section III, although general, did not use a notation appropriate
to two channels. We will need to generalize the notation brie
y; this is very straightforward
and we will only outline it here. There are two di�erent measurements of this signal,
(assumed to be independent) and we designate these measurements as d1(ti) and d2(ti).
The model functions will be abbreviated as f1(t) and f2(t) with the understanding that
each measurement of the signal has di�erent amplitudes, and noise variance, but the same
f!g parameters.

We can write the likelihood (15) immediately to obtain

L(f1; f2) / (�1�2)
�N exp

(
� 1

2�21

NX
i=1

[d1(ti)� f1(ti)]
2 � 1

2�22

NX
i=1

[d2(ti)� f2(ti)]
2

)

Because the amplitudes and noise variance are assumed di�erent in each channel we may
remove these using the same procedure developed in Section III. After removing the nuisance
parameters the marginal posterior probability of the fomegag parameters is just the product
of the \student t-distributions" (28) for each channel separately:

P (!jDI) /
"
1� mh21

Nd21

#m�N
2

"
1� mh22

Nd22

#m�N
2

(66)

where the subscripts refer to the channel number. As explained previously, (66) in e�ect
estimates the noise level independently in the two channels.

A procedure for dealing with the multiple frequency problem was outlined in Section V,
and we will apply that procedure here. The �rst step in any harmonic analysis is to plot
the data and the log of the probability of a single harmonic frequency. If there is only one
channel present, this is essentially the periodogram of the data, Fig. 5(B) and Fig. 5(D).
When more than one channel is present the log probability of a single harmonic frequency
is essentially the sum of the periodograms for each channel weighted by the appropriate
variances. If the variances are unknown, then the appropriate statistic is the log of (66),
Fig. 6.

Now as was noted in Section V, if the frequencies are well separated, a peak in the
periodogram above the noise level is evidence of a frequency near that peak. From examining
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Figure 6: The Log10 Probability of One Frequency in Both Channels

When more than one channel is present, the periodogram is not the proper statistic to be
analyzed for indications of a simple harmonic frequency. The analysis for multiple channels
indicates the proper statistic is essentially the sum of the periodograms for each channel
weighted by the mean-square variance of the data. A phase reversal in this data produces
the splitting in the central peak.
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Fig. 6 we see there are a number of peaks near 0.3. There are many more peaks than theory
indicates there should be. Is this evidence of more going on than theory predicts?

To answer this question we proceed to the next phase of the analysis and apply a two
frequency model to each of these peaks. We know that these frequencies have some type of
decay structure, we include a decay by adding an exponential factor. For this preliminary
analysis we assume the same decay rate for all the frequencies. The model used in this
investigation was

f1(t) = [B1 cos(!1t) + B2 sin(!1t) + B3 cos(!2t) + B4 sin(!2t)]e
��t:

After searching each of these peaks we found there is one center frequency at ! � 0:3
and two others at ! � 0:25 and ! � 0:35. On the periodogram, therefore, the two highest
peaks are not indicative of two frequencies but of a single frequency located at the minimum
between them. Here we have the opposite e�ect from what we saw in Section IV; there we
had only one peak in the periodogram, but �ner analysis showed that there were two close
frequencies present. Here, we have two peaks in the periodogram, but �ner analysis shows
only one frequency to be present. These examples just illustrate one of the major results
of this work: If one asks a question about a single harmonic frequency, when the data
have evidence of multiple complex phenomena, one can get answers which are misleading
or simply incorrect in the light of more realistic models. Peaks in the Fourier transform are
not always an indication of the frequencies present.

We investigated this splitting in the periodogram further. It is caused by a phase reversal
in the signal. That is, if the signal is a simple cosine times a decay function D(t), then the
splitting can appear when D(t) becomes negative. This type of feature can be present in
an NMR signal because due to magnetic �eld inhomogeneity, the \line" may be a complex
superposition of many small signals which have slightly di�erent frequencies.

The next step in the analysis is to construct a plausible model for the data and apply
it. As was demonstrated earlier, the exact decay model is not needed to obtain good
estimates of a frequency. What is needed is a decay model which is reasonable for the
phenomenon being observed: one which decays down to the noise level on the same time
scale as the \true" decay. We simply assume the decay is magnet limited and that the decay
is Lorentzian. The model we use has three frequencies and two decay rates,

f1(t) = [B1 cos(!1t) + B2 sin(!1t)] exp[��1t]
+ [B3 cos(!2t) + B4 sin(!2t)] exp[��2t]
+ [B5 cos(!3t) + B6 sin(!3t)] exp[��1t]

and similarly for channel 2

f2(t) = [B7 cos(!1t) +B8 sin(!1t)] exp[��1t]
+ [B9 cos(!2t) +B10 sin(!2t)] exp[��2t]
+ [B11 cos(!3t) + B12 sin(!3t)] exp[��1t]:

There are �ve f!g parameters, 12 amplitudes, and two noise variances. Probability theory
has eliminated 14 of the nineteen parameters. We are primarily interested in the three
frequencies; however, the decay rates will tell us just how strongly the inhomogeneous
magnetic �eld is a�ecting the decay rates.

The computer code in Appendix A was used to evaluate the \student t-distribution"
(28) for each channel, and these were multiplied to obtain (66). We searched in the �ve
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dimensional parameter space until we located the maximum of the distribution by the
\pattern" searching procedure noted before. We then used the procedure given in Section
V, equations (64-65), to estimate the standard deviation of the parameters. The derivatives
which appear in this procedure were evaluated numerically. The results of this calculation
are:

Parameter estimate � standard deviation
!1 74.51 � 0.03 Hz
!2 96.68 � 0.02 Hz
!3 117.38 � 0.02 Hz
�1 4.02 � 0.02 Hz
�2 5.07 � 0.02 Hz

We also estimated the signal-to-noise ratio (42) for each channel:

Signal

Noise
channel 1 = 14:5

Signal

Noise
channel 2 = 14:2

and the estimated variance (40) with s = 1:

h�i channel 1 = 10:9

h�i channel 2 = 10:7:

The actual frequencies are of little importance in this experiment (the values are con-
trolled by how close to 55Mhz a local oscillator is set). What is important is the relative sep-
aration of the three frequencies. The separation for the HD doublet (!3�!1) is 42:87�0:04
Hz and the D2 frequency is displaced from the center by � = !2�(!3+!1)=2 = 0:74�0:04
Hz. The separation frequency is in excellent agreement with previous measurements and
with theory [16, 15].

The HD and D2 components of the signal are known to have very di�erent decay rates,
[15] yet the values indicated by probability theory are nearly the same. We conclude that
the inhomogeneous magnetic �eld has signi�cantly a�ected the decay rates. The decay is
substantially magnet limited.

We can compare these estimates directly to the absorption spectrum, Fig. 7(A). The
absorption spectrum resolves the three frequencies. However, they are very close together.
The reason the analysis of this experiment is so di�cult with the absorption spectrum is
that the full-width at half maximum for the D2 peak, Fig. 7(A), is 16Hz. Figure 7(B) gives
the estimates from (66). We have plotted these estimates as three normalized Gaussians
each centered at the estimated frequency and having the same standard deviation as the
estimated frequency. Clearly the resolution of these frequencies is much improved. With
separately normalized distributions, the heights in Fig. 7(B) are indications of the accuracy
of the three estimates, not of the power carried by the signal.
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Figure 7: Comparison to an Absorption Spectrum

The absorption spectrum, Fig. 7(A) can be obtained from two channels by assuming the
channels have the same amplitude and are 90� out of phase. A complex Fourier transform
is calculated using one channel as the real and the other as the imaginary part of the signal.
The global phase of the complex transform is adjusted until the real par has the largest
possible area. The real part is the absorption spectrum. Of course the channels do not have
the same amplitude and are not exactly 90� out of phase. It requires an extensive procedure
to put these two channels into a usable form. Using the full-width at half maximum of the
absorption spectrum to determine the accuracy estimate and converting to physical units
one may determine the frequencies to about �15 Hz. The probability analysis, Fig. 7(B)
used a three frequency model with two decay rates. The estimated accuracy is �0:02 Hz.
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B. Economic data: Corn crop yields.

Economic data are hard to analyze, in part because the data are frequently contaminated
by large spurious e�ects, and the time series are often very short. Here we will examine
one example of economic data to demonstrate how to remove some unknown and spurious
e�ects. In particular, we will analyze one hundred year's worth of the corn crop data from
three states (Kansas, South Dakota, and Nebraska), Fig. 8(A) through Fig. 8(C) [17].

We would like to know if there is any indication of periodic behavior in these data.
These data have been analyzed before. Currie [18] used a high pass �lter and then

applied the Burg algorithm [19] to the �ltered data. Currie �nds one frequency near 20
years which is attributed to the lunar 18.6 year cycle, and another at 11 years, which is
attributed to the solar cycle.

There are three steps in Currie's analysis that are troublesome. First, the Burg algorithm
is not optimal in the presence of noise (although it is for the problem it was formulated to
solve). The fact that it continues to work means that the procedure is reasonably robust;
that does not change the fact that it is fundamentally not appropriate to this problem [19].

Second, one has doubts about the �lter: could it suppress the e�ect one is looking for or
introduce other spurious e�ects? Third, to apply the Burg algorithm when the data consist
of the actual values of a time series, the autoregression order (maximum lag to be used)
must be chosen and there is no theoretical principle to determine this choice. We do not
mean to imply that Currie's result is incorrect; only that it is provisional. We would like to
apply probability theory as developed in this paper to check these results.

The �rst step in a harmonic analysis is simply to plot the data, Fig. 8(A) through
Fig. 8(C) and the log of the posterior probability of a single harmonic frequency. In the
previous example we generalized the analysis for two measurements. The generalization to
an arbitrary number of measurements is just a repeat of the previous arguments and we
give the result here for any number of measurements

P (!jDI) /
rY

j=1

8><
>:
"
1� mjh2j

Njd2j

#mj�Nj
2

9>=
>; : (67)

The subscripts refer to the j'th measurement, and each of the models have mj amplitudes,
and each data set contains Nj data values. Additionally it was assumed that the noise
variance �j was unknown and possibly di�erent for each measurement. The \student t-
distributions" (28) for each measurement should be computed separately, thus estimating
and eliminating the e�ects particular to one measurement, and then multiplied to obtain
the posterior probability, for the common e�ects (67). As discussed earlier, this procedure
leads to conservative estimates; if we incorporated more prior information (for example, if
it were known that the �j are all equal) we would obtain slightly better results.

For this harmonic analysis we take the model to be a single sinusoid which oscillates
about a constant. The model for one measurement may be written

fj(t) = Bj1 +Bj2 sin(!t) +Bj3 cos(!t): (68)

We allow Bj1, Bj2, and Bj3 to be di�erent for each measurement; thus there are a total
of nine amplitudes, one frequency, and three noise variances. To compute the posterior
probability for each measurement, we used the computer code in Appendix A. The log
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Figure 8: Corn Crop Yields for Three Selected States

SOUTH DAKOTA
CORN YIELDS

KANSAS
CORN YIELDS

NEBRASKA
CORN YIELDS

LOG PROBABILITY OF A COMMON
FREQUENCY IN THE THREE STATES

The three data sets analyzed were corn yields in bushels per acre for South Dakota,
Fig. 8(A), Kansas, Fig. 8(B), and Nebraska, Fig. 8(C). The log probability of a single
common frequency plus a constant is plotted in, Fig. 8(D). The question we would like to
answer is \Is that small bump located at approximately 0.3, corresponding to a 20 year
period, a real indication of a frequency or is it an artifact of the trend?" The sharp up turn
in the yields occurs at about 1940 and is due to improved varieties, irrigation, etc.
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of each \student t-distribution" (28) was computed, and added to obtain the log of the
posterior probability of a single common harmonic frequency, Fig. 8(D).

What we would like to know is, \Are those small bumps in Fig. 8(D) indications of
periodic behavior, or are they artifacts of the noise or trend?" To attempt to answer this,
consider the following model function

fj(t) = Tj(t) + Bj;1 cos(!t) + Bj;2 sin(!t)

where we have augmented the standard frequency model by a trend Tj(t). The only pa-
rameter of interest is the frequency !. The trend Tj(t) is a nuisance function. To eliminate
the nuisance function Tj(t) we expand the trend in orthonormal polynomials Lj(t). These
orthonormal polynomials could be any complete set. We use the Legendre polynomials with
an appropriate scaling of the independent variable to make them orthonormal on the region
(�49:5 � t � 49:5). This is the range of values used for the time index in the sine and
cosine terms. After expanding the trend, the model function for the j'th measurement can
be written

fj(t) =
rX

k=0

Bj;k+1Lk(t) +Bj;r+2 cos(!t) + Bj;r+3 sin(!t):

Notice, that if r �=� 0 the problem is reduced to the previous problem (68). The cosine
and sine model functions have been renumbered to remain consistent with the notation used
earlier.

The expansion order r must be set to some appropriate value. From looking at these data
one sees that it will take at least a second order expansion to remove the trend. The actual
expansion order for the trend is unknown. However, it will turn out that the estimated
frequencies are insensitive to the expansion order, as long as the expansion is su�cient to
represent the trend without representing the signal of interest. Of course, di�erent orders
would have very di�erent implications about other questions than the ones we are asking;
for example, predicting the future trend. That is an altogether more di�cult problem than
the one we are solving.

The e�ects of increasing the expansion order r can be demonstrated by plotting the
posterior probability for several expansion orders; see Fig. 9(A) through Fig. 9(H). For
expansion orders zero, Fig. 9(A) through expansion order 2, Fig. 9(C) the trend has not
been removed: the posterior probability continues to pick out the low frequency trend.
When a third order trend is used, Fig. 9(D) a sudden change in the behavior is seen. The
frequency near ! � 0:31 suddenly shows up, along with a spurious low frequency e�ect due
to the trend. In expansion orders four through seven, Fig. 9(E) through Fig. 9(H) the trend
has been e�ectively removed and the posterior probability indicates there is a frequency
near 0.31 corresponding to a 20.4 year period.

The amount of variability in the frequency estimates as a function of the expansion
order will show how strongly the trend expansion is a�ecting the estimated frequency. The
frequency estimates for the fourth through seventh order expansions are

(f4)est = 20:60� 0:08 years

(f5)est = 20:47� 0:09 years

(f6)est = 20:20� 0:07 years

(f7)est = 20:47� 0:09 years:
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Figure 9: The Joint Probability of a Frequency Plus a Trend

PROBABILITY OF A HARMONIC FREQUENCY
IN THE CORN YIELD DATA WITH

A CONSTANT CORRECTION

PROBABILITY OF A HARMONIC FREQUENCY
IN THE CORN YIELD DATA WITH

A FIRST ORDER TREND CORRECTION

By including a trend expansion in our model we e�ectively look for oscillations about a
trend. This is not the same as detrending, because the trend functions and the sine and
cosine functions are never orthogonal. The zero order trend (or constant) plus a simple-
harmonic-frequency model (A) is dominated by the trend. When we included a linear trend
the height of the trend is decreased some, however the trend is still the dominant e�ect in
the analysis.
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PROBABILITY OF A HARMONIC FREQUENCY
IN THE CORN YIELD DATA WITH

A SECOND ORDER TREND CORRECTION

PROBABILITY OF A HARMONIC FREQUENCY
IN THE CORN YIELD DATA WITH

A THIRD ORDER TREND CORRECTION

The probability of a single harmonic frequency plus a second-order trend (C) continues to
pick out the low frequency trend. However, the level and spread of the marginal posterior
probability density is such that the trend has almost been removed. When the probability
of a single harmonic frequency plus a third-order trend is computed, the probability density
suddenly changes behavior. The frequency near 0.3 is now the dominant feature (D). The
trend has not been completely removed; a small artifact persists at low frequencies.
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PROBABILITY OF A HARMONIC FREQUENCY
IN THE CORN YIELD DATA WITH

A FOURTH ORDER TREND CORRECTION

PROBABILITY OF A HARMONIC FREQUENCY
IN THE CORN YIELD DATA WITH

A FIFTH ORDER TREND CORRECTION

When the probability of a fourth-order trend plus a harmonic frequency is computed the
trend is now completely gone and only the frequency at 20 years remains (E). When the
expansion order is increased in (F) the frequency estimate is not essentially changed.
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PROBABILITY OF A HARMONIC FREQUENCY
IN THE CORN YIELD DATA WITH

A SIXTH ORDER TREND CORRECTION

PROBABILITY OF A HARMONIC FREQUENCY
IN THE CORN YIELD DATA WITH

A SEVENTH ORDER TREND CORRECTION

Increasing the expansion order further does not signi�cantly a�ect the estimated frequency
(G) and (H). If the expansion order is increased su�ciently, the expansion will begin to re-
move the harmonic oscillation; and the posterior probability density will gradually decrease
in height.
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Figure 10: Probability of Two Frequencies After Trend Correction

This is the natural logarithm of the probability of two common harmonic frequencies in the
crop yield data with a �fth order trend. This type of structure is what one expects from
the su�cient statistic when there is only one frequency present. Notice the maximum is
located roughly along a vertical and horizontal line at 0.3.
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Here the estimated errors represent one standard deviation of the posterior distribution.
Generally, it is considered good policy to claim an accuracy corresponding to two standard
deviations. Thus, given the spread in the estimates it appears there is indeed evidence for
a frequency of a period 20.4 � 0.2 years.

Now that the e�ects of removing a trend are better understood, we can proceed to a two
frequency model plus a trend to see if we can verify Currie's two frequency results. Figure
10 is a plot of the log of this probability distribution after removing a �fth order trend. The
behavior of this plot is the type one would expect when a two frequency model is applied
to a data set that contains only one frequency. From this we cannot verify Currie's results.
That is, for the three states taken as a whole these data show evidence for a oscillation near
20.4 years as he reports, but we do not �nd evidence for an 11 year cycle. This does not say
that Currie's result is incorrect; he incorporated much more data into his calculation and
to check it we would need to include data from at least a dozen more states. While this is
a worthy project it is beyond the scope of this simple demonstration.

C. Another NMR example.

Now that the tools have been developed we can demonstrate how one can incorporate
partial information about a model. In the corn crop example the trend was unknown, so
it was expanded in orthonormal polynomials and integrated out of the problem, while we
included what partial information we had in the form of the sine and cosine terms. In this
NMR example let us assume that the decay function is of interest to us. We would like to
determine this function as accurately as possible.

The data we used, Fig. 11(A), in this example are one channel of a pure D2 spectrum.
[14]. Figure 11(B), contains the periodogram for these data. For this demonstration we will
use the �rst N = 512 data points because it contains most of the signal.

For D2, theory indicates there is a single frequency with decay [15].
Now we expect the signal should have the form

f(t) = fB1 sin(!t) + B2 cos(!t)gD(t)

where D(t) is the decay function, and the sine and cosine e�ectively express what partial
information we have about the signal. We will expand the decay function D(t) to obtain

f(t) = fB1 sin(!t) +B2 cos(!t)g
rX

j=0

DjLj(t)

where Dj are the expansion coe�cients for the decay function, B1 and B2 are e�ectively the
magnitude and phase of the sinusoidal oscillations, and Lj are the Legendre polynomials
with the appropriate change of variables. This model can be rewritten as

f(t) =
rX

j=0

DjB1

�
Lj(t)[sin(!t) +

B2

B1
cos(!t)]

�
:

There is an indeterminacy in the overall scale. That is, the amplitude of the sinusoid
and the amplitude of the decay D(t) cannot both be determined. One of them is necessarily
arbitrary. We chose the amplitude of the sine term to be one because it e�ectively elimi-
nates one f!g parameter from the problem. We have a choice, in this problem, on which
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Figure 11: A Second NMR Example - Decay Envelope Extraction

THE NMR TIME SERIES

SCHUSTER PERIODOGRAM

These NMR data, Fig. 11(A), are a free-induction decay for a D2 sample. The sample was
excited using a 55MHz pulse and the signal detected using a mixer-demodulator. We used
512 data samples to compute the periodogram, Fig. 11(B). We would like to use probability
theory to obtain an estimate of the decay function while incorporating what little we know
about the oscillations.
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parameters are to be removed by integration. We chose to eliminate fDjB1g because there
are more of them, even though they are really the parameters of interest.

When we eliminate a parameter from the problem, it does not mean that it cannot
be estimated. In fact, we can always calculate these fDjB1g parameters from the linear
relations between models (19). For this problem it is computationally simpler to search for
the maximum of the probability distribution as a function of frequency omega and the ratio
B1=B2, and then use equation (19) to compute the expansion coe�cients. If we choose to
eliminate the amplitudes of the sine and cosine terms then we must search for the maximum
of the probability distribution as a function of the expansion parameters; there could be a
large number of these.

We must again set the expansion order r; here we have plenty of data so in principle
we could take r to be large. However, unless the decay is rapidly varying we would expect
a moderate expansion of perhaps 5th to 10'th order to be more than adequate. In the
examples given here we set the expansion order to 10. We solved the problem also with
the expansion order set to 5, and the results were e�ectively identical to the 10'th order
expansion.

To solve this problem we again used the computer code in Appendix A, and the \pattern"
search routine discussed earlier. We located the maximum of the two dimensional \student t-
distribution" (28) and used the procedure given in Section V, equations (64-65), to estimate
the standard deviation of the parameters. We �nd these to be

(!)est = 0:14976� 10�5

�
B2

B1

�
est

= �:475� 2:7� 10�3:

The variance of these data was d2 = 2902, the estimated noise variance h�2iest � 27:1, and
the signal-to-noise ratio was 23.3.

After locating the maximum of the probability density we used the linear relations (19)
between the orthonormal model and the nonorthonormal model to compute the expansion
coe�cients. As noted earlier there is an arbitrary choice in the scale (magnitude) of the
decay function. We set the scale by requiring the decay function and the reconstructed
model function to touch at one point near the global maximum. We have plotted the data
and the estimated decay function, Fig. 12(A). In Fig. 12(B) we have a close up of the data,
the decay function, and the reconstructed signal.

It is apparent from this plot that the decay is not Lorentzian. The decay function
drops rapidly and then begins to oscillate. This is a real e�ect and is not an artifact of the
procedure we are using. There are two possible interpretations: there could be a second
small signal which is beating against the primary signal, or the inhomogeneous magnetic
�eld could be causing it. The most likely cause is the inhomogeneous magnetic �eld, because
one can literally change a dial setting on the equipment and get the decay envelope to change
shape [14].

In problems with multiple signals, or even with this D2 signal, when the magnetic �eld
is particularly inhomogeneous the decay function can show much stronger oscillations and
even become negative.
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Figure 12: How Does an NMR Signal Decay?

DATA AND DECAY ENVELOPE

A CLOSE UP OF THE DATA, THE MODEL,

AND THE DECAY ENVELOPE

The decay function in Fig. 12(A) comes down smoothly and then begins to oscillate. This
is a real e�ect, and is not an artifact of the analysis. This type of behavior is characteristic
of an inhomogeneous magnetic �eld. In Fig. 12(B) we have plotted a blow up of the data,
the predicted signal, and the decay function.

61



D. Wolf's relative sunspot numbers.

In 1848 Rudolf Wolf introduced the relative sunspot numbers as a measure of solar activity.
These numbers, de�ned earlier, are available as yearly averages since 1700, Fig. 1(A). The
importance of these numbers is primarily due to the fact that they are the longest available
quantitative index of the sun's internal activity. The most prominent feature in these
numbers is the 11.04 year cycle discussed earlier. In addition to this cycle a number of
others have been reported including 180, 90, 45, and a 22 year cycle as well as a number of
others [20, 21].

We will apply probability theory to these numbers to see what can be learned. We must
stress that in what follows we have no idea what the \true" model is, but can only examine
a number of di�erent possibilities. We begin by asking \What is the evidence for multiple
harmonic frequencies in these data?"

These numbers have been analyzed before by many writers. We will contrast our results
to those obtained recently by Sonnet [21] and Bracewell [22].

The analysis done by Sonnet concentrated on determining the spectrum of the relative
sunspot numbers. He used the Burg [19] algorithm. This routine is extremely sensitive to
the frequencies. In addition to �nding the frequencies, this routine will sometimes shift the
location of the predicted frequency, and it estimates a spectral density (a power normalized
probability distribution), not the power carried in a line. Consequently, no accurate deter-
mination of the power carried by these lines has been done. We will use probability theory
to estimate the frequencies, their accuracy, the amplitudes, the phases, as well as the power
carried by each line.

Again, we plot the log of the probability of a single harmonic frequency plus a constant,
Fig. 13(A). We include the constant and allow probability theory to remove it the correct
way, instead of subtracting the average from the data as was done in Section II. We do this
to see if this theoretically correct way of eliminating a constant will make any di�erence in
the predicted frequencies. We plot the log of the marginal posterior probability (28) using

f(t) = B1 + B2 cos!t+ B3 sin!t

as the model. The periodogram, Fig. 13(B), is a su�cient statistic for harmonic frequencies
if and only if the time series has zero mean. Under these conditions the periodogram must
go to zero at omega = 0. In the periodogram, Fig. 13(B), that small peak near zero is
a spurious e�ect due to subtracting the average value from the data. Probability analysis
using a simple harmonic frequency plus a constant does not show any evidence for this
period, Fig. 13(A).

Now we examined each of the peaks in Fig. 13(A) with a two frequency model plus a
constant to determine if there is any evidence for doublets. There are two, one located near
0.11 and another one near 0.72. Additionally, we examined the low frequency region very
closely to see if there was evidence for a very low frequency and found none. The fact that
we could not �nd it does not prove conclusively that the period is not there. We had to
search for the peak in a high dimensional space. The peak is small, and the search routine
could step over it.

We had to decide which peaks to include in the model; we simply took the 13 largest.
We choose 13 because we wanted at least a 12 frequency model to be able to compare to
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Figure 13: Adding a Constant to the Model

THE NATURAL LOGARITHM OF THE POSTERIOR PROBABILITY

OF A FREQUENCY CORRECTED FOR A CONSTANT

THE SCHUSTER PERIODOGRAM

The loge of the marginal posterior probability of a single harmonic frequency plus a constant
13(A), and the periodogram 13(B) are almost identical. The periodogram is related to the
posterior probability when �2 is known; for a data set with zero mean the periodogram
must go to zero at zero frequency. The low frequency peak near zero in 13(B) is caused
by subtracting the average from the data. The loge of the marginal posterior probability
of a single harmonic frequency plus a constant will go to zero at zero only if there is no
evidence of a constant component in the data. Thus 13(A) does not indicate the presence
of a spurious low frequency peak, only a constant.
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Sonnet's model. We then applied a multiple frequency model using

f(t) = B1 +
13X
j=1

fBj+1 cos(!jt) +B2j+1 sin(!j t)g :

We computed the probability of the frequencies f!1; � � � ; !13g using the computer code
given in Appendix A. The pattern search routine discussed earlier was used to locate the
maximum of this 13 dimensional space to �ve signi�cant digits. Two of the 13 frequencies
converged to the same numerical value, indicating that what we thought was two frequencies
in Fig. 13(A) was in fact only one frequency. We removed one of these frequencies to obtain
a 12 frequency model, and repeated the search using the previous values as our initial
estimates. We computed the standard deviation using the procedure developed in Section
V, equations (64-65). Last, we used the linear relations between the models (19) to compute
the nonorthonormal amplitudes as well as their second moments. These are summarized as
follows

hf̂iest hB1i hB2i hB2
1 +B2

2i
95:29� 0:62 years 7.522 17.624 371.01
58:94� 0:38 years 11.165 5.247 157.91
51:07� 0:18 years 1.499 -8.789 84.73
28:16� 0:07 years 6.146 -3.522 54.07
13:03� 0:01 years 6.728 -1.637 51.08
11:86� 0:02 years -15.613 -0.840 247.52
10:99� 0:02 years -37.569 -10.329 1521.95
10:75� 0:01 years 23.071 -4.526 555.29
9:97� 0:01 years 13.509 -11.932 328.87
9:41� 0:01 years 1.971 7.038 58.63
8:48� 0:01 years -9.222 4.655 109.81
8:12� 0:01 years 1.654 7.254 60.12

With these 12 frequencies and one constant the estimated noise variance is h�2iest = 398,
and the signal-to-noise ratio is 15.2. The constant term had a value of 48.22. We have
plotted these 12 frequencies as normalized Gaussians 14(A) to get a better understanding
of their determination. The best determined frequency is, of course, the 10:99 � 0:016
year cycle. When we performed this calculation using the single frequency model our
estimate was 11:04�0:02 years; we have moved the estimated frequency over three standard
deviations. This illustrates that the periodogram can give misleading estimates when there
are multiple close frequencies. However, as long as they are reasonably well separated the
estimates should not be o� by very much.

We could not verify the 180 year period. We included this one in the original 13 fre-
quencies. However, the pattern search consistently confounded it with the 95 year period.
This could be due to poor searching procedures or it could indicate that the data do not
show evidence for this frequency. Regardless, this frequency needs to be examined more
closely. Additionally, there are a number of other small frequencies on the periodogram; we
did not include these even though we suspect they are real frequencies.

We can plot an approximation to the power spectral density just by normalizing 14(A)
to the appropriate power level, Fig. 14(B). The dotted line on this plot is the periodogram
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Figure 14:

The posterior probability of twelve frequencies in the relative sunspot numbers Fig. 14(A).
When plotted as normalized Gaussians the height represents the accuracy of the estimates
not the power carried by them. Figure 14(B) has a power normalization. The peak value
of the periodogram is an accurate estimate of the energy carried in a line so long as there
are well separated resonances. However, around the 11 year period (! � 0:58) at least one
of the estimated frequencies is located at a minimum of the periodogram.
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normalized to the highest value in the power spectral density. This plot brings home the
fact that when the frequencies are close the periodogram is not even approximately the
correct su�cient statistic for estimating a harmonic frequency. At least one of the predicted
frequencies occurs right at a minimum of the periodogram. Also notice that the normalized
power is more or less in fair agreement with the periodogram when the frequencies are well
separated. That is because for a simple harmonic frequency the peak of the periodogram
is indeed a good estimate of the energy carried in that line.

In addition to the power spectral density we can plot what this model thinks is the
sunspot series { less the noise, We have repeated the plot of the sunspot numbers, Fig.
15(B) for comparison.

This simple 12 frequency model reproduces most, but not all of the features of the
sunspot numbers. There is still something missing from the model. In particular the data
values drop uniformly to zero at the minima. This behavior is not repeated in the 12
frequency model. Also, the data have sharper peaks than troughs, while our sinusoidal
model, of course, does not. This is, as has been noted before, evidence of some kind of
\recti�cation" process. A better model could easily reproduce these e�ects.

We chose to examine 12 frequencies because that was the number of frequencies used in
a model proposed by Sonnet [21].

He has attempted to explain these numbers in terms of harmonic frequencies: 180,
90, and 45 are examples of harmonically related frequencies. In 1982, C. P. Sonnet [21]
published a small paper in which the sunspot number spectrum was be explained using

f(t) = [1 + � cos(!mt)][cos(!ct) + �]2

as a model, where Sonnet's estimate of magnetic cycle !m is approximately 90 years, and
his estimate of the solar cycle !c is 22 years. The recti�cation e�ect is present here.

This model is written in a deceptively simple form and a number of constants (phases
and amplitudes) have been suppressed. We propose to apply probability theory using this
model to determine !c and !m. To do this we �rst square the term in brackets and then use
trigonometric identities to reduce this mode to a form where probability theory can readily
estimate the amplitudes and phases:

f(t) = A1 + A2 cos([!m]t) +A3 sin([!m]t)

+ A4 cos([2!m]t) +A5 sin([2!m]t)

+ A6 cos([!c � 2!m]t) +A7 sin([!c � 2!m]t)

+ A8 cos([!c � !m]t) +A9 sin([!c � !m]t)

+ A10 cos([!c]t) +A11 sin([!c]t)

+ A12 cos([!c + !m]t) +A13 sin([!c + !m]t)

+ A14 cos([!c + 2!m]t) +A15 sin([!c + 2!m]t)

+ A16 cos([2!c � 2!m]t) +A17 sin([2!c � 2!m]t)

+ A18 cos([2!c � !m]t) +A19 sin([2!c � !m]t)

+ A20 cos([2!c]t) +A21 sin([2!c]t)

+ A22 cos([2!c + !m]t) +A23 sin([2!c + !m]t)

+ A24 cos([2!c + 2!m]t) +A25 sin([2!c + 2!m]t):

Now Sonnet speci�es the amplitudes, but not the phases [21].
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Figure 15:

Not only can one obtain the estimated power carried by the signal, one can use the ampli-
tudes to plot what probability theory has taken to be the signal with the noise removed.
Of course a reconstruction of this nature is only as good as the model, Fig. 15(A). We have
included the relative sunspot numbers, Fig. 15(B), for easy comparison. The predicted
series can probably be made better by including some of the smaller cycles we ignored in
this analysis.
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We will take a more general approach and not constrain these amplitudes. We will
simply allow probability theory to pick the amplitudes which �t the data best. Thus any
result we �nd will have the Sonnet frequencies but the amplitudes and phases will be chosen
to �t the data \better" than the Sonnet model. After integrating out the amplitudes we
have only two parameters to determine, omegac and omegam.

We located the maximum of the posterior probability density using he computer code in
Appendix A, and using the pattern search routine. The \best" estimated value for omegac
(in years) is approximately 21.0 years, and !m approximately 643 years. The values for
these parameters given by Sonnet are !c = 22 years and 76 < !m < 108 years with a mean
value of !m � 89 years. Our probability analysis estimates the value of omegac and omegam
to be substantially di�erent from those given by Sonnet. The most indicative value is the
estimated variance for this model f�2gSonnet = 605. This is worse than that predicted
for the simple 12 frequency model by almost a factor of 1.5 and is comparable to the �t
achieved by a �ve frequency model.

We have so far investigated two variations of harmonic analysis on the relative sunspot
numbers. Let us proceed to investigate a more complex case to see if there might be more
going on in the relative sunspot numbers than just simple periodic behavior. These data
have been looked at from this standpoint at least once before. Bracewell [22] has analyzed
these numbers to determine if they could have a time-dependent \instantaneous phase."
The model used by Bracewell can be written as

f(t) = B1 + Re [E(t) exp (i�(t) + i!11t)]

where B1 is a constant term in the data, E(t) is a time varying magnitude of the oscillation,
�(t) is the \instantaneous phase," and !11 is the 11 year cycle.

This model does not incorporate any prior information into the problem. It is so general
that any function can be written in this form. Nevertheless, the idea that the phase �(t)
could be varying slowly with time is interesting and worth investigation.

An \instantaneous phase" in the notation we have been using is a chirp. Let �(t) stand
for the phase of the signal, and omega its frequency. Then we may Taylor expand �(t)
around t = 0 to obtain

!t + �(t) � �0 + !t+
�00

2
t2 + � � �

where we have assumed the �rst derivatives �0(t) is zero. If this were not so then ! is not
the frequency as presumed here. The Bracewell model can then be approximated as

f(t) = B1 +E(t)[cos(!t+ �t2) +B2 sin(!t+ �t2)]

To second order, the Bracewell model is just a chirped frequency with a time varying
envelope.

We can investigate the possibility of a chirped signal using

f(t) = B1 +B2 cos(!t+ �t2) + B3 sin(!t+ �t2)

as the model, where � is the chirp rate, B1 is a constant component, ! is the frequency of
the oscillation, and B2 and B3 are e�ectively the amplitude and phase of the oscillation.
This model is not a substitute for the Bracewell model. Instead this model is designed to
allow us to investigate the possibility that the sunspot numbers contain evidence of a chirp,
or \instantaneous phase" in the Bracewell terminology.
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Figure 16: Chirp in the Sunspot Numbers?

LOG10 PROBABILITY OF A CHIRPED FREQUENCY

To check for chirp we take f(t) = A1 + A2 cos(!t + �t2) + A3 sin(!t + �t2) as the model.
After integrating out the nuisance parameters, the posterior probability is a function of two
variables, the frequency ! and the chirp rate �. We then plotted the loge of the posterior
probability. The single highest peak is located at a positive value of �: there is evidence of
chirp.
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A plot of the log of the \student t-distribution" using this as a model is the statistic to
look for chirp. However, we now have two parameters to plot, not one. We have constructed
a contour plot around the 11 year cycle, Fig. 16. We expect this plot to have a peak near
the location of a frequency. It will be centered at zero chirp rate if there is no evidence for
chirp, and at some nonzero value when there is evidence for chirp. Notice, that along the
line � = 0 this \student t-distribution" is just the simple harmonic probability distribution
studied earlier, Fig. 1(A). As with the Fourier transform if there are multiple well separated
chirped frequencies (with small chirp rates) then we expect there to be multiple peaks in,
Fig. 16.

There are a number of peaks; the single largest point on the plot is located o� the � = 0
axis. The data contain evidence for chirp. The low frequencies also show evidence for chirp.
To the extent that the Bracewell \instantaneous phase" may be considered as a chirp we
must agree with him; there is evidence in these data for chirp.

In light of this discussion, exactly what these numbers represent and exactly what is
going on inside the sun to produce them must be reconsidered. Certainly we have not
answered any real questions about what is going on; indeed that was not our intention.
Instead we have shown how use of probability theory for data analysis can facilitate future
research by testing various hypotheses more sensitively than could the traditional intuitive
ad hoc procedures.

VII. SUMMARY AND CONCLUSIONS.

In this analysis we have attempted to explore some of the aspects of Bayesian parameter
estimation as they might apply to time series, even though the analysis as formulated is
applicable to any data set, be it a time series or not.

A. Summary

We began this analysis in Section II, by applying probability theory to estimate the spectrum
of a data set that, we postulated, contained only a single sinusoid plus noise. In Section
III, we generalized these simple considerations to relatively complex models including the
problem of estimating the spectrum of multiple nonstationary harmonic frequencies in the
presence of noise. This led us to the \student t-distribution:" the posterior probability of
the f!g parameters, whatever their meaning. In Section IV, we estimated the nuisance
parameters and calculated, among other things, the power spectral density, and the noise
variance. In Section V, we specialized to spectrum analysis and explored some of the
implications of the \student t-distribution" for this problem. At the end of Section V, we
developed a procedure for estimating the accuracy of the f!g parameters. In Section VI, we
applied these analyses to a number of real time series with the aim of exploring some of the
techniques needed to apply these procedures. In particular, we demonstrated how to use
them to estimate multiple nonstationary frequencies, and how to incorporate incomplete
information into the estimation problem. In the sunspot example we did not know which
model was appropriate, so we applied a number of di�erent models with the intention of
discovering as much about them as possible.
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B. Conclusions

Perhaps the single biggest conclusion of this work is that what one can learn about a
data set depends critically on what questions one asks. If one insists on doing Fourier
transform analysis on a data set, then our analysis shows that one will always obtain
answers of the form \What is the evidence of a single stationary harmonic frequency in
these data?" This will be more than adequate if there are plenty of data and no evidence of
complex phenomena. However, if the data show evidence for multiple frequencies or complex
behaviors, the Fourier transform gives answers which can be misleading or incorrect in light
of more realistic models.
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APPENDIX A.

A Computer Algorithm for Computing the Posterior
Probability (28) for an Arbitrary Set of Model Equations.

This subroutine was used to prepare all of the numerical analysis presented in this work.
This is a general purpose implementation of the calculation that will work for any model
functions and for any setting of the parameters, independent of the number of parameters
and their values. In order to do this, the subroutine requires �ve pieces of input data and
one work area. On return one receives Hi(tj), hi, h2, P (f!gjDI), h�i, and p̂(f!g). The
parameter list is as follows:

Parm Label i/o Description/function

N INO input
The number of discrete time samples in the
time series to be analyzed.

m IFUN input
This is the order of the matrix gjk and is equal
to the number of model functions.

dj DATA input
The time series (length N): this is the data
to be analyzed.

Gij GIJ input

This matrix contains the j

nonorthogonal model functions [dimensioned
as GIJ(INO,IFUN)] and evaluated at ti.

ZLOGE ZLOGE i/o

This is the loge of the normalization con-
stant. On the initial call to this routine
this �eld should be initialized to zero. The
subroutine never computes the \student t-
distribution" when ZLOGE is zero: instead
the loge 0 the \student t-distribution" is com-
puted. It is up to the user to locate a value
of loge[P (f!gjDI)] close to the maximum of
the probability density. This log value should
then be placed in ZLOGE to act as an upper
bound on the normalization constant. With
this value in place the subroutine will return
the value of the probability; then, an inte-
gral over the probability density can be done
to �nd the correct value of the normalization
constant. For an example of this procedure
see the driver routine in Appendix B.

Hi(tj) HIJ output
These are orthonormal model functions (17)
evaluated at the same time and parameter val-
ues as GIJ.

hi HI output
These are projections of the data onto the or-
thonormal model functions (24) and (36).

h2 H2BAR output The su�cient statistic h2 (26) is always com-
puted.
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P (f!gjDI) ST output

The \student t-distribution" (28) is not com-
puted when the normalization constant is
zero. To insure this �eld is computed the nor-
malization constant must be set to an appro-
priate value. The calling routine in Appendix
B has an example of how to do this.

STLE STLE output
This is the loge of the \student t-distribution"
(28). This �eld is always computed even when
the normalization is zero.

h�i SIG output

This is the expected value of the noise vari-
ance � as a function of the f!g parameters
(40) with s = 1.

p̂(f!g) PHAT output
This is the power spectral density (39) as a
function of the f!g parameters.

WORK scratch

This work area must be dimensioned 5m2.
The dimension in the subroutines was set high
to avoid possible \call by value" problems in
FORTRAN. On return WORK contains the
eigenvectors and eigenvalues of the gjk ma-
trix. The eigenvector matrix occupies m2 con-
tinuous storage locations. The m eigenvalues
immediately follow the eigenvectors.

This subroutine makes use of a general purpose \canned" eigenvalue and eigenvector
routine which has not been included. If one chooses to implement this program one must
replace the call (clearly marked in the code) with a call to an equivalent routine. Both the
eigenvalues and eigenvectors are used by the subroutine and it assumes the eigenvectors are
normalized.

SUBROUTINE PROB

C (INO,IFUN,DATA,GIJ,ZLOGE,HIJ,HI,H2BAR,ST,STLOGE,SIGMA,PHAT,WORK)

IMPLICIT REAL*08(A-H,O-Z)

DIMENSION DATA(INO),HIJ(INO,IFUN),HI(IFUN),GIJ(INO,IFUN)

C DIMENSION WORK(IFUN,IFUN,20)

C

C

CALL VECTOR(INO,IFUN,GIJ,HIJ,WORK)

C

H2=0D0

DO 1600 J=1,IFUN

H1=0D0

DO 1500 L=1,INO

1500 H1=H1 + DATA(L)*HIJ(L,J)

HI(J)=H1

H2=H2 + H1*H1

1600 CONTINUE

H2BAR=H2/IFUN

Y2=0D0

DO 1000 I=1,INO
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1000 Y2=Y2 + DATA(I)*DATA(I)

Y2=Y2/INO

C

QQ=1D0 - IFUN*H2BAR / INO / Y2

STLOGE=DLOG(QQ) * ((IFUN - INO)/2D0)

C

AHOLD=STLOGE - ZLOGE

ST =0D0

IF(DABS(ZLOGE).NE.0D0)ST=DEXP(AHOLD)

C

SIGMA=DSQRT( INO/(INO-IFUN-2) * (Y2 - IFUN*H2BAR/INO) )

C

PHAT = IFUN*H2BAR * ST

C

RETURN

END

SUBROUTINE VECTOR(INO,IFUN,GIJ,HIJ,WORK)

IMPLICIT REAL*8(A-H,O-Z)

DIMENSION HIJ(INO,IFUN),GIJ(INO,IFUN),WORK(IFUN,IFUN,20)

C

DO 1000 I=1,IFUN

DO 1000 J=1,INO

1000 HIJ(J,I)=GIJ(J,I)

C

CALL ORTHO(INO,IFUN,HIJ,WORK)

C

DO 5000 I=1,IFUN

TOTAL=0D0

DO 4500 J=1,INO

4500 TOTA =TOTAL + HIJ(J,I)**2

ANORM=DSQRT(TOTAL)

DO 4000 J=1,INO

4000 HIJ(J,I)=HIJ(J,I)/ANORM

5000 CONTINUE

RETURN

END

SUBROUTINE ORTHO(INO,NMAX,AIJ,W)

IMPLICIT REAL*8 (A-H,O-Z)

REAL*8 AIJ(INO,NMAX),W(NMAX)

C

IT=1

IE= T + NMAX*NMAX

IM=IE + NMAX*NMAX

IW=IM + NMAX*NMAX

I2=IW + NMAX*NMAX
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CALL TRANS(INO,NMAX,AIJ,W(IM),W(IT),W(IE),W(IW),W(I2))

RETURN

END

SUBROUTINE TRANS

C (INO,NMAX,AIJ,METRIC,TRANSM,EIGV,WORK1,WORK2)

IMPLICIT REAL*8 (A-H,O-Z)

REAL*8 AIJ(INO,NMAX)

REAL*8 METRIC(NMAX,NMAX),EIGV(NMAX)

REAL*8 TRANSM(NMAX,NMAX),WORK1(NMAX),WORK2(NMAX)

C

DO 2000 I=1,NMAX

DO 2000 J=1,NMAX

TOTAL=0D0

DO 1000 K=1,IO

1000 TOTAL=TOTAL + AIJ(K,I)*AIJ(K,J)

METRIC(I,J)=TOTAL

2000 CONTINUE

C******************************************************************

C**** THIS CALL MUST BE REPLACED WITH THE CALL TO AN EIGENVALUE

C**** AND EIGENVECTOR ROUTINE

CALL EIGERS(NMAX,NMAX,METRIC,EIGV,1,TRANSM,WORK1,WORK2,IERR)

C**** NMAX IS THE ORDER OF THE MATRIX

C**** METRIC IS THE MATRIX FOR WHICH THE EIGENVALUES AND VECTORS

C**** ARE NEEDED

C**** EIGV MUST CONTAIN THE EIGENVALUES ON RETURN

C**** TRANSM MUST CONTAIN THE EIGENVECTORS ON RETURN

C**** WORK1 IS A WORK AREA USED BY MY ROUTINE AND MAY BE USED

C**** BY YOUR ROUTINE. ITS DIMENSION IS NMAX

C**** IN THIS ROUTINE. HOWEVER IT MAY BE DIMENSIONED

C**** AS LARGE AS NMAX*NMAX WITHOUT AFFECTING ANYTHING.

C**** WORK2 IS A SECOND WORK AREA AND IS OF DIMENSION NMAX

C**** IN THIS ROUTINE, IT MAY ALSO BE DIMENSIONED AS

C**** LARGE AS NMAX*NMAX WITHOUT AFFECTING ANYTHING.

C******************************************************************

C

C SET UP THE ORTHOGONAL VECTORS

DO 5120 K=1,INO

DO 3100 J=1,NMAX

3100 WORK1(J)=AIJ(K,J)

DO 5120 I=1,NMAX

TOTAL=0D0

DO 3512 J=1,NMAX

3512 TOTAL=TOTAL + TRANSM(J,I)*WORK1(J)

5120 AIJ(K,I)=TOTAL

RETURN

END
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APPENDIX B.

An Example of how to Use Subroutine PROB

The following program was designed and used to prepare one example (the single har-
monic frequency with Lorentzian decay) in the text. The steps needed to create this example
may be generally described as follows: we read in the data; got an initial estimate of the log
normalization constant, then integrate over the probability distribution, update the nor-
malization constant, and evaluate the normalized probability distribution over the desired
range of parameter values.

There are two basic steps involved in using subroutine PROB: �rst one must evaluate the
nonorthogonal model functions at the desired values of the parameters; then, the subroutine
PROB must be called to evaluate the \student t-distribution" for these parameter settings.

There are three routines in this example: the main line routine performs the steps just
described; SETGIJ will evaluate the nonorthogonal model functions at the desired time
points for the desired parameter values; ALIKE evaluates the probability density at the
parameter values requested by the Gaussian quadrature routine. We have not included the
integration routine since such routines are easily available, or easily written if need be.

IMPLICIT REAL*08(A-H,O-Z)

DIMENSION DATA(512),HIJ(512,2),HI(2),GIJ(512,2),WA(2,2,20)

COMMON DATA,HIJ,HI,GIJ,WA,ZLE,INO

EXTERNAL ALIKE

C

C CALL PROB(INO,2,DATA,GIJ,ZLE,HIJ,HI,H2,ST,STLE,SIG,PHAT,WA)

C

C INO THE NUMBER OF DATA POINTS

C 2 THE NUMBER OF MODEL FUNCTIONS

C DATA THE TIME SERIES

C GIJ THE NON-ORTHONORMAL MODEL FUNCTIONS

C ZLE LOG BASE E OF THE NORMALIZATION CONSTANT

C HIJ THE ORTHONORMAL MODEL FUNCTIONS

C HI THE PROJECTIONS OF THE DATA ONTO HIJ

C H2 THE H**2 BAR STATISTIC

C ST STUDENT T-DISTRIBUTION

C STLE LOG BASE E OF THE STUDENT T-DISTRIBUTION

C SIG THE VARIANCE OF THE DATA

C PHAT POWER SPECTRAL DENSITY

C WA A WORK AREA USED BY THE SUBROUTINE

C

C

INO=512

READ(8,1000)(DATA(I),I=1,INO)

1000 FORMAT(1X,19A4)

C

ID=50

FLOW=0.295D0
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FHI =0.31D0

DF =(FHI - FLOW)/(ID-1)

ALOW=-0.03D0

AHI =-0.01D0

DA =(AHI - ALOW)/(ID-1)

C

C THIS ROUTINE WILL SET THE NORMALIZATION CONSTANT

C

ZLE=0D0

C

CALL SETGIJ(INO,2,GIJ,0.3D0,-.02D0)

C

CALL PROB(INO,2,DATA,GIJ,ZLE,HIJ,HI,H2,ST,STLE,SIG,PHAT,WA)

C

ZLE=STLE

C

C INTEGRATE THE STUDENT T-DISTRIBUTION AROUND THE MAXIMUM

C THIS IS A 24POINT GAUSSIAN QUADRATURE ROUTINE

AN2=XYINT(0.299D0,0.301D0,1,-.03D0,-.01D0,1,ALIKE)

C

ZLE=ZLE + DLOG(AN2)

C

C THIS LOOP EVALUATES THE NORMALIZED DISTRIBUTION

C ON A 50 BY 50 GRID. THESE POINTS ARE USED IN THE

C PLOT ROUTINES AND THEY WERE ALSO USED TO INTEGRATE

C OUT THE DECAY OR THE FREQUENCY PARAMETERS

C

TOTAL=0D0

DO 2000 I=1,ID

DO 2000 J=1,ID

C

W=(I-1)*DF + FLOW

ALPHA=(J-1)*DA + ALOW

C

CALL SETGIJ(INO,2,GIJ,W,ALPHA)

C

C EVALUATE THE PROBABILITY DENSITY AT THESE POINTS

CALL PROB(INO,2,DATA,GIJ,ZLE,HIJ,HI,H2,ST,STLE,SIG,PHAT,WA)

C

TOTAL=TOTAL + ESTP*DF*DA

C

WRITE(7,3333)W,ALPHA,ST,SIG,PHAT

2000 WRITE(6,3333)W,ALPHA,ST,SIG,PHAT

3333 FORMAT(5D15.5)

C

STOP
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END

SUBROUTINE SETGIJ(INO,IVEC,GIJ,W,ALPHA)

IMPLICIT REAL*08(A-H,O-Z)

DIMENSION GIJ(INO,IVEC)

C

C THIS ROUTINE WILL EVALUATE THE MODEL FUNCTIONS AT

C FREQUENCY W AND DECAY RATE ALPHA

C

ADELTA=0.5D0*INO + 0.5D0

C

DO 1000 I=1,INO

C

TIME=I - ADELTA

C

C EVALUATE MODEL FUNCTION 1

GIJ(I,1)=DCOS(W*TIME)*DEXP(ALPHA*TIME)

C

1000 GIJ(I,2)=DSIN(W*TIME)*DEXP(ALPHA*TIME)

C

RETURN

END

REAL FUNCTION ALIKE*8(W,ALPHA)

IMPLICIT REAL*08(A-H,O-Z)

DIMENSION DATA(512),HIJ(512,2),HI(2),GIJ(512,2),WA(2,2,20)

COMMON DATA,HIJ,HI,GIJ,WA,ZLE,INO

C

C THIS ROUTINE IS USED BY THE INTEGRATION ROUTINE

C IT RETURNS THE VALUE OF THE INTEGRAND AT THE REQUESTED

C VALUES

C

CALL SETGIJ(INO,2,GIJ,W,ALPHA)

C

CALL PROB(INO,2,DATA,GIJ,ZLE,HIJ,HI,H2,ST,STLE,SIG,PHAT,WA)

C

ALIKE=ST

C

RETURN

END
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