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Frequency Estimation And
Generalized Lomb-Scargle
Periodograms

G. Larry Bretthorst

ABSTRACT Using Bayesian probability theory we demonstrate that the
Lomb-Scargle periodogram may be generalized in a straightforward manner
to nonuniformly nonsimultaneously sampled quadrature data when the si-
nusoid has arbitrary amplitude modulation. This generalized Lomb-Scargle
periodogram is the sufficient statistic for single frequency estimation in a
wide class of problems ranging from stationary frequency estimation in real
uniformly sampled data, to frequency estimation for a single sinusoid hav-
ing exponential, Gaussian, or arbitrary amplitude modulation. In addition
we define the bandwidth of a nonuniformly sampled data set and show
that the phenomenon of aliases exists in both uniformly and nonuniformly
sampled data and that the phenomenon has the same cause in both types
of data. Finally, we show that nonuniform sampling does not affect the
accuracy of the frequency estimates; although it may affect the accuracy of
the amplitude estimates.

1 Introduction

The problem of estimating the frequency or period of a sinusoid arises in
an a host of contexts in the sciences. For example, in NMR the signals are
sinusoidal with exponential decay. In Meteorology temperature data obvi-
ously fluctuate sinusoidal on a daily and yearly basis. In astrophysics the
period of variables stars may be on the order of days to years with nonsta-
tionary nonsinusoidal oscillations about a trend. The data gathered by the
different sciences is almost as varied as phenomena being observed. In NMR
the quadrature data are almost always uniformly sampled (a quadrature
measurement is one in which a measurement of both the real and imagi-
nary components of the sinusoids has been made). In astrophysics the data
are often magnitudes sampled at unevenly spaced intervals; while other
astrophysics data may consists of measured velocities, etc.

The standard way to deal with such data is to compute a discrete Fourier
transform of the data and then view the transform as an absorption spec-
trum, a power spectrum, a Schuster periodogram (Schuster 1905), or a
Lomb-Scargle periodogram (Lomb 1976, and Scargle 1982 and 1989), see
Priestley (1981) and Marple 1987 for a review of classical spectral estima-
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tion techniques. The problem with all such techniques is that they have not
be derived from any single set of unifying principles that tell one what is the
optimal way to estimate the period. In this paper we change that by using
Bayesian probability theory to deriving the discrete Fourier transform, the
power spectrum, the weighted power spectrum, the Schuster periodogram
and the Lomb-Scargle periodogram as special cases of a generalized Lomb-
Scargle periodogram, and show that the generalized Lomb-Scargle peri-
odogram is a sufficient statistic for single frequency estimation, (a suffi-
cient statistic summarizes all of the information in the data relevant to the
question being asked).

In Bayesian probability theory are two basic rules for manipulating prob-
abilities, the product rule and the sum rule; all other rules may be derived
from these. If A, B, and C stand for three arbitrary hypotheses, then the
product rule states

P (AB|C) = P (A|C)P (B|AC), (1.1)

where P (AB|C) is the joint probability that “A and B are true given that
C is true,” P (A|C) is the probability that “A is true given C is true,” and
P (B|AC) is the probability that “B is true given that both A and C are
true.”

In Aristotelian logic, the hypothesis “A and B” is the same as “B and
A,” so the numerical value assigned to the probabilities for these hypothe-
ses must be the same. The order may be rearranged in the product rule,
Eq. (1.1), to obtain:

P (BA|C) = P (B|C)P (A|BC), (1.2)

which may be combined with Eq. (1.1) to obtain a seemingly trivial result

P (A|BC) =
P (A|C)P (B|AC)

P (B|C)
. (1.3)

This is Bayes’ theorem. It is named after Rev. Thomas Bayes, an 18th
century mathematician who derived a special case of this theorem. Bayes’
calculations were published in 1763, two years after his death. This theorem,
as generalized by Laplace, is the basic starting point for inference problems
using probability theory as logic.

The second rule of probability theory, the sum rule, relates to the prob-
ability for “A or B.” The operation “or” is indicated by a + inside a
probability symbol. The sum rule states that given three hypotheses A, B,
and C, the probability for “A or B given C” is

P (A+B|C) = P (A|C) + P (B|C)− P (AB|C). (1.4)

If the hypotheses A and B are mutually exclusive, that is the probability
P (AB|C) is zero, the sum rule becomes:

P (A+B|C) = P (A|C) + P (B|C). (1.5)
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The sum rule is especially useful because it allows one to investigate an in-
teresting hypothesis while removing an uninteresting or nuisance hypothesis
from consideration.

To illustrate how to use the sum rule to eliminate nuisance hypotheses,
suppose D stands for the data, f the hypothesis “the frequency of a si-
nusoidal oscillation was f ,” and B the hypothesis “the amplitude of the
sinusoid was B.” Now suppose one wishes to compute the probability for
the frequency given the data, P (f |D), but the amplitude B is present and
must be dealt with. The way to proceed is to compute the joint proba-
bility for the frequency and the amplitude given the data, and then use
the sum rule to eliminate the amplitude from consideration. Suppose, for
argument’s sake, the amplitude B could take on only one of two mutu-
ally exclusive values B ∈ {B1, B2}. If one computes the probability for the
frequency and (B1 or B2) given the data one has

P (f |D) ≡ P (f [B1 +B2]|D) = P (fB1|D) + P (fB2|D). (1.6)

This probability distribution summarizes all of the information in the data
relevant to the estimation of the frequency f . The probability P (f |D) is
called the marginal probability for the frequency f given the data D.

The marginal probability P (f |D) does not depend on the amplitudes
at all. To see this, the product rule is applied to the right-hand side of
Eq. (1.6) to obtain

P (f |D) = P (B1|D)P (f |B1D) + P (B2|D)P (f |B2D) (1.7)

but
P (B1|D) + P (B2|D) = 1 (1.8)

because the hypotheses are exhaustive. So the probability for the frequency
f is a weighted average of the probability for the frequency given that one
knows the various amplitudes. The weights are just the probability that
each of the amplitudes is the correct one. Of course, the amplitude could
take on more than two values; for example if B ∈ {B1, · · · , Bm}, then the
marginal probability distribution becomes

P (f |D) =

m∑
j=1

P (fBj |D), (1.9)

provided the amplitudes are mutually exclusive and exhaustive. In many
problems, the hypotheses B could take on a continuum of values, but as
long as only one value of B is realized when the data were taken the sum
rule becomes

P (f |D) =

∫
dBP (fB|D). (1.10)

Note that the B inside the probability symbols refers to the hypothesis;
while the B appearing outside of the probability symbols is a number or
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index. A notation could be developed to stress this distinction, but in most
cases the meaning is apparent from the context.

2 Frequency Estimation—The Generalized
Lomb-Scargle Periodogram

The problem addressed is the estimation of the frequency, f , of a sinusoid
having known arbitrary amplitude modulation given nonuniformly non-
simultaneously sampled quadrature data. To apply Bayesian probability
theory to any problem one must relate the parameter of interest, here the
frequency, to the measured data. This is done through a model. For a sinu-
soid having arbitrary amplitude modulation, the frequency may be related
to the real data by

dR(ti) = A cos(2πfti − θ)Z(ti) +B sin(2πfti − θ)Z(ti) + nR(ti) (1.11)

where dR(ti) denotes the real data measured at time ti, A and B are the
cosine and sine amplitudes of the sinusoid, and nR(ti) denotes the noise
at time ti. Following Lomb’s example, θ will be defined in such a way as
to make the cosine and sine functions orthogonal on the discretely sam-
pled times. The function Z(ti) specifies the amplitude modulation of the
sinusoid; Z(t) could be an exponential, a Gaussian, or any other function
appropriate to the signal being modeled. If Z(t) is a function of any pa-
rameters, these parameters are presumed known; for example, if Z(t) is a
decaying exponential, then we assume the decay rate constant is known.
Of course, in any Bayesian analysis we could turn our attention to the pa-
rameters in Z(f) and estimate them, but for this problem we will consider
them as known and suppress them from the notation.

In a quadrature data set one also has a measurement of the imaginary
or quadrature part of the signal. The imaginary data are 90◦ out of phase
with the real data. Here this means that model for the imaginary data is
90◦ out of phase with the model for the real data:

dI(t′j) = −A sin(2πft′j − θ)Z(t′j) +B cos(2πft′j − θ)Z(t′j) + nI(t′j). (1.12)

We have labeled the times at which the imaginary data were acquired with
a prime superscript to distinguish them from the times at which the real
data were acquired and we have added a subscript, I, to several quantities
to indicate that these quantities refer to the imaginary part of the signal.
The total number of data values will be designated as N = NR + NI ,
where NR and NI are the number of data values in the real and imaginary
channels respectively; NR and NI need not be equal and can be zero.

In Bayesian probability theory all of the information in the data relevant
to the problem being solved is summarized in a probability density function.
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For the problem of estimating the frequency, this probability is denoted as
P (f |DRDII), where this should be read as the posterior probability for the
frequency f given the real data DR, the imaginary data DI and the prior
information I. In this probability all of the arguments are hypotheses. For
example f stands for a hypotheses of the form “at the time the data were
take the value of the frequency was f .” Thus probability theory is ranking
a whole series of models, one for each value of f , and the width of the
posterior probability is a natural measure of how uncertain one is of the
frequency. The hypotheses I appearing in P (f |DRDII) refers to all of our
prior information—including the model equations—and does not refer to
the imaginary data; rather it refers to the general background information
that goes into making this a well posed problem.

Using the sum rule of probability theory, Eq. (1.5), the posterior prob-
ability for the frequency is computed from the joint posterior probability
for all of the parameters:

P (f |DI) =

∫
dAdBdσP (fABσ|DRDII) (1.13)

where σ is the standard deviation of the Gaussian noise prior probability.
The right-hand side of this equation may be factored using Bayes’ theorem,
Eq. (1.3), and the product rule, Eq. (1.1); one obtains

P (f |DRDII) ∝
∫
dAdBdσP (f |I)P (A|I)P (B|I)P (σ|I)

× P (DR|fABσI)P (DI |fABσI)
(1.14)

where we have assumed logical independence of the parameters, and that
the standard deviation of the noise prior probability is the same for both
the real and imaginary data; i.e., our prior information indicate that real
and imaginary data have the same noise levels.

If we assign uniform prior probabilities to P (f |I), P (A|I), P (B|I), a Jef-
freys’ prior (1/σ) to P (σ|I), and assign the two likelihoods using Gaussian
noise prior probabilities, one obtains:

P (f |DI) ∝
∫ ∞
−∞

dA

∫ ∞
−∞

dB

∫ ∞
0

dσσ−(N+1) exp

{
− Q

2σ2

}
(1.15)

where

Q ≡ Nd2 − 2AR(f)− 2BI(f) +A2C(f) +B2S(f). (1.16)

The mean-square data value, d2, is defined as

d2 =
1

N

NR∑
i=1

dR(ti)
2 +

NI∑
j=1

dI(t′j)
2

 . (1.17)
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The function R(f) is defined as

R(f) ≡
NR∑
i=1

dR(ti) cos(2πfti − θ)Z(ti)

−
NI∑
j=1

dI(t′j) sin(2πft′j − θ)Z(t′j)

(1.18)

which for uniformly sampled data reduces to the real part of a weighted
discrete Fourier transform of the complex data. The function Z(t) plays
the role of the weight or apodizing function. Similarly, the function I(f) is
defined as

I(f) ≡
NR∑
i=1

dR(ti) sin(2πfti − θ)Z(ti)

+

NI∑
j=1

dI(t′j) cos(2πft′j − θ)Z(t′j)

(1.19)

which for uniformly sampled data reduces to the imaginary part of a
weighted discrete Fourier transform of the complex data. The function C(f)
is defined as

C(f) ≡
NR∑
i=1

cos2(2πfti − θ)Z(ti)
2 +

NI∑
j=1

sin2(2πft′j − θ)Z(t′j)
2 (1.20)

and is an effective number of data items in the real data, see Bretthorst
2000 for more on this. Similarly the function S(f) is defined as

S(f) ≡
NR∑
i=1

sin2(2πfti − θ)Z(ti)
2 +

NI∑
j=1

cos2(2πft′j − θ)Z(t′j)
2 (1.21)

and is the effective number of data items in the imaginary data. Finally,
the condition that the cross terms cancel, i.e., that the model functions are
orthogonal, is used to determine the value of θ. This condition is given by:

0 =

NR∑
i=1

cos(2πfti − θ) sin(2πfti − θ)Z(ti)
2

−
NI∑
j=1

sin(2πft′j − θ) cos(2πft′j − θ)Z(t′j)
2.

(1.22)

Note that if the data are simultaneously sampled, ti = t′i, Eq. (1.22) is
automatically satisfied, so θ may be defined to be zero. Otherwise, θ is
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given by

θ =
1

2
tan−1

[∑NR

i=1 sin(4πfti)Z(ti)
2 −

∑NI

j=1 sin(4πft′j)Z(t′j)
2∑NR

i=1 cos(4πfti)Z(ti)2 −
∑NI

j=1 cos(4πft′j)Z(t′j)
2

]
. (1.23)

The triple integral in Eq. (1.15) may be evaluated as follows: First, the
integrals over the two amplitudes are uncoupled Gaussian quadrature in-
tegrals and are easily done. One needs only complete the square in the
exponent, and a simple change of variables to evaluate them. The remain-
ing integral over the standard deviation of the noise prior probability may
be transformed into a Gamma integral and is also easily evaluated. We do
not give the details of these evaluations; rather we simply give the results:

P (f |DI) ∝ 1√
C(f)S(f)

[
Nd2 − h2

] 2−N
2

(1.24)

where the sufficient statistic h2 is given by

h2 =
R(f)2

C(f)
+
I(f)2

S(f)
(1.25)

and is a generalization of the Lomb-Scargle periodogram.
The generalized Lomb-Scargle periodogram, Eq. (1.25), has a number

of very interesting features. First, when the data are real and the sinu-
soid is stationary, the sufficient statistic for single frequency estimation
is the Lomb-Scargle periodogram; not the Schuster periodogram, i.e., not
the power spectrum. Second, when the data are real, but Z(t) is not con-
stant, then Eq. (1.25) generalizes the Lomb-Scargle periodogram in a very
straightforward manner to account for the amplitude modulation of the
signal. Third, for uniformly sampled quadrature data when the sinusoid
is stationary, Eq. (1.25) reduces to a Schuster periodogram or the power
spectrum of the data. So while the Schuster periodogram is not a suffi-
cient statistic for frequency estimation in real nonquadrature data, it is
a sufficient statistic for quadrature data. Fourth, for uniformly sampled
quadrature data when the sinusoid is not stationary, Eq. (1.25) reduced to
a weighted power spectrum of the data. Thus the weighted power spectrum
is the sufficient statistic for single frequency estimation when the data are
quadrature. Fifth, when the quadrature data are nonuniformly but simul-
taneously sampled, Eq. (1.25) generalizes the weighted power spectrum to
account for the nonuniform samples, but otherwise is the exact analogue of
a weighted power spectrum. Finally, when the data are nonuniformly and
nonsimultaneously sampled, Eq. (1.25) generalizes to a functional form
that is formally identical to a Lomb-Scargle periodogram but adapted to
an amplitude modulated quadrature detected sinusoid.
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3 Aliasing

Now that we have finished deriving the generalized Lomb-Scargle peri-
odogram, we would like to investigate some of its properties, in particular
the aliasing phenomenon. First, it is easy to show that the parameter θ
appearing in the generalized Lomb-Scargle model does not change the lo-
cation of the peak in the Lomb-Scargle periodogram; fixing θ only changes
the estimated phase of the sinusoid. Consequently, fixing θ simplifies the
functional form of the sufficient statistic to formally resemble a power spec-
trum and indeed the generalized Lomb-Scargle periodogram reduces to a
power spectrum for simultaneously sampled quadrature data. Now a pow-
ers spectrum, i.e,. the discrete Fourier transform, is a periodic function of
frequency. The period is called the bandwidth, and the bandwidth is the
largest frequency interval free of repeats or aliases. Because the generalized
Lomb-Scargle periodogram reduces to a power spectrum under appropriate
conditions, the bandwidth of the generalized Lomb-Scargle periodogram is
exactly the same as the bandwidth of the discrete Fourier transform. The
question we would like to investigate in this section, is what happens to
these repeats or aliases when the data are nonuniformly nonsimultaneously
sampled? Are the aliases still there? If not, where did they go?

First, the discrete Fourier transform may be defined as

F(fk) ≡
N−1∑
j=0

d(tj) exp {2πifktj} (1.26)

where the complex data d is given by d ≡ dR(ti) + idR(ti). For uniformly
sample data the times are given by

tj = j∆T (1.27)

and if the fast discrete Fourier transform is used to perform this calculation,
the frequencies fk are given by

fk =
k

N∆T
k ∈

{
−N

2
,−N

2
+ 1, · · · , N

2

}
. (1.28)

The time ∆T is the time interval between data samples and can be used
to define the Nyquist critical frequency,

fNc
= ± 1

2∆T
. (1.29)

The Nyquist critical frequency may be used to define the bandwidth:

bandwidth ≡ (−fNc
≤ f ≤ fNc

) . (1.30)

It is the largest frequency interval over which the discrete Fourier transform
is not a periodic function of frequency.
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To understand why the discrete Fourier transform is a periodic function
of frequency, suppose we wish to evaluate the discrete Fourier transform at
the frequencies outside the bandwidth:

fk =
k

N∆T
, k = mN + k′, k′ ∈

{
−N

2
,−N

2
+ 1, · · · , N

2

}
. (1.31)

The index k′ specifies the nonaliased frequency interval of a discrete Fourier
transform. The integer m shifts this frequency interval up or down by an
integer multiple of the total bandwidth. If m = 0, we are in the interval
(−fNc ≤ fk ≤ fNc); if m = 1, we are in the interval (fNc ≤ fk ≤ 3fNc),
etc. If we now substitute Eqs. (1.31, and 1.27) into Eq. (1.26), the reason
the discrete Fourier transform is periodic becomes readily apparent

F(fk′) ≡
N−1∑
j=0

d(tj) exp

{
2πi(mN + k′)j

N

}
, (1.32)

=

N−1∑
j=0

d(tj) exp {2πimj} exp

{
2πik′j

N

}
, (1.33)

=

N−1∑
j=0

d(tj) exp

{
2πik′j

N

}
, (1.34)

=

N−1∑
j=0

d(tj) exp {2πifk′tj} . (1.35)

In going from Eq. (1.33) to (1.34) a factor, exp{i(2πmj)}, was dropped
because both m and j are integers, so (2πmj) is an integer multiple of
2π, and the complex exponential is one. Aliases occur because the complex
exponential canceled leaving behind a discrete Fourier transform on the
interval (−fNc ≤ fk ≤ fNc). The integer m specifies which integer multiple
of the bandwidth is being evaluated and will always be an integer no matter
how the data are collected. However, the integer j came about because the
data were uniformly sampled. If the data had not been uniformly sampled
the relationship, tj = j∆T , would not hold, the complex exponential would
not have cancelled, and aliases would not have been present.

In the present problem, nonuniformly nonsimultaneously sampled data,
there is no ∆T such that all of the acquisition times are integer multiples
of this time; not if the times are truly sampled randomly. However, all data
and times must be recorded to finite accuracy. Consequently, there must
be a largest effective dwell time, ∆T ′, such that all of the times (both the
real and imaginary) must satisfy

tl = kl∆T
′ tl ∈ {Real ti or Imaginary t′j} (1.36)

where kl is an integer. The subscript l was added to k to indicate that each
of the times tl requires a different integer kl to make this relationship true.
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Of course, this was also true for uniformly sampled data: its just that for
uniformly sampled data the integers were consecutive, kl = 0, 1, · · ·N − 1.
The effective dwell time is always less than or equal to the smallest time
interval between data items, and is the least common denominator for all of
the times. Additionally, the effective dwell time is the dwell time at which
one would have had to acquire data in order to obtain a uniformly sampled
data set with data items at each of the times ti and t′j . The effective dwell
time, ∆T ′, can be used to define a Nyquist critical frequency

fNc =
1

2∆T ′
. (1.37)

Aliases must appear for frequencies outside this bandwidth.
The reason that aliases must appear for frequencies outside this band-

width can be made apparent in the following way. Suppose we have a hypo-
thetical data set that is sampled at ∆T ′. Suppose further, the hypothetical
data are zero everywhere except at the times we actually have data, and
there the data are equal to the appropriate dR(ti) or dI(t′j). If we now
compute the discrete Fourier transform of this hypothetical data set, then
by the analysis done in Eqs. (1.32)-(1.35) the Nyquist critical frequency of
this data set is 1/2∆T ′ and frequencies outside the bandwidth are aliased.
Now look at the definitions of R(f) and I(f), Eqs. (1.18) and (1.19). You
will find that these quantities are just the real and imaginary parts of the
discrete Fourier transform of our hypothetical data set. The zeros in the
hypothetical data cannot contribute to the sums in the discrete Fourier
transform: they act only as place holders, and so the only part of the sums
that survive are just where we have data. By construction that is just what
Eqs. (1.18) and (1.19) are computing. So aliases must appear at frequencies
greater than this Nyquist critical frequency. For much more on aliases see
Bretthorst 2000.

4 Parameter Estimates

The generalize Lomb-Scargle periodogram is a sufficient statistic for the
estimation of a frequency in nonuniformly nonsimultaneously sample data.
However, the frequency is not the only parameter appearing in the model;
the model also implicitly contains an amplitude, phase and possible one or
more parameters associated with amplitude modulation of the signal. In
this section we would like to investigate what happens to the parameter
when the data are nonuniformly nonsimultaneously sampled. In particular
we would like to know if the parameter estimates change when the data
are nonuniformly nonsimultaneously sampled.

In this discussion we are going to estimate the parameters using the data
shown in Fig. 1(A) and (B). These two data sets contain exactly the same
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FIGURE 1. Uniformly and Nonuniformly Sampling
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Fig. 1. Panel (A) and (B) are simulated data, each data set has exactly the

same signal having exactly the same signal-to-noise. The data sets differ only

because panel (A) has been uniformly sampled, while (B) has been nonuniformly

sampled. Note the nonuniform samples were taken exponentially, thus there are

more samples at the beginning of the data and exponentially fewer at the end of

the data.
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signal and have exactly the same signal-to-noise, they differ from each other
only in that panel (A) has been uniformly sampled while panel (B) has been
randomly sampled. These random samples are distributed exponentially.
We mention this only because it will become important later when we
consider amplitude estimation. The noise realizations in each data set are
different, and this will result in slightly different parameter estimates for
each data set.

We will discuss estimation of the frequency, decay rate constant and
the amplitude. We will not discuss estimation of the phase and standard
deviation of the noise prior probability as these are of less importance. The
model we will use is given by

dR(ti) = A cos(2πfti + φ) exp {−αti} (1.38)

for the real channel. This model is of the general form of the Lomb-Scargle
model, but now we have suppressed the extra phase parameter, as its re-
dundant, we have added an exponential decay rate constant to describe
the amplitude modulation, and we have written the model in terms of an
amplitude and phase rather than sine and cosine amplitudes.

Markov chain Monte Carlo was used to compute the marginal poste-
rior probability for each parameter. All of the parameters appearing in
the model were simulated simultaneously, thus the target distribution of
Markov chain Monte Carlo simulation was the joint posterior probability
for all the parameters. We targeted the joint posterior probability for all
of the parameters for computational convenience; i.e., it was easier to do
a single Markov chain Monte Carlo simulation than to do five separate
calculations, one for each parameter appearing in the model. Because the
probability density functions shown in Fig. 2(A), (B) and (D) were formed
by computing a histogram of the Markov chain Monte Carlo samples, there
are small, irrelevant, artifacts in these plots that are related to the number
of samples drawn from the simulation. For more on Markov chain Monte
Carlo methods and how these can be used to implement Bayesian calcula-
tions see Neal 1993 and Gilks, et. al. 1996.

The posterior probability for the frequency, decay rate constant, and
amplitude are shown in Fig. 2(A), (B) and (D) respectively. Each of these
plots is the fully normalized marginal posterior probability for the param-
eter of interest independent of all of the other parameters appearing in
the model. Panel (C) contains the absolute-value spectra computed from
these two data sets and will be used to compare Fourier transform esti-
mation procedures to the Bayesian calculations. The curves drawn with
open characters were computed using the uniformly sampled data shown
in Fig. 1(A); while the solid lines in these plots were computed from the
nonuniformly nonsimultaneously sampled data shown in Fig. 1(B).

The marginal posterior probability for the frequency is shown in Fig. 2(A).
This is the fully normalized marginal posterior probability for the frequency
independent of all of the other parameters, Eq. (1.24). Note that the true
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frequency, 10 Hz, is well covered by the posterior probability computed
from both the uniformly (open characters) and nonuniformly nonsimulta-
neously (sold line) sampled data. Also note that these distributions are
almost identical in height and width. Consequently, both the uniform and
nonuniformly nonsimultaneously sampled data have given the same param-
eter estimates to within the uncertainty in these estimates. Of course the
details for each estimated differ, because the noise realizations in each data
set differ. Consequently, the frequency estimate is not strongly dependent
on the sampling scheme. Indeed this can be derived from the rules of prob-
ability theory with the following proviso: the two sampling schemes must
cover the same total sampling time and must sample the signal in a reason-
ably dense fashion so that sums may be approximated by integrals. Having
said this, we must reemphasize that this is only true for frequency estimates
using data having sampling schemes covering the same total sampling time;
it is not true if the sampling times differ nor is it necessarily true of the
other parameters appearing in the model. Indeed one can show that for a
given number of data values, the precision of the frequency estimate for
a stationary sinusoid is inversely proportional to the total sampling time.
Thus, sampling 10 times longer will result in frequency estimates that are
10 times more precise. As noted in Bretthorst 1988 this is equivalent to
saying that for frequency estimation data values at the front and back of
the data are most important in determining the frequency, because it is in
these data that small phase differences are most highly magnified by the
time variable.

We have also plotted the absolute-value spectra computed from these
two data sets, Fig. 2(C). Note that the peaks of these two absolute-value
spectra are at essentially the same frequency as the corresponding peaks
in panel (A); although they are plotted on differing scales. If the abso-
lute value spectrum is used to estimate the frequency, one would typically
use the peak frequency as the estimate, and then claim roughly the half-
width-at-half-height as the uncertainty in this estimate. For these two data
sets that is about 10 plus or minus 2 Hz. The two fully normalized pos-
terior probabilities shown in panel (A) span a frequency interval of only
0.2 Hz. This frequency interval is roughly 6 standard deviations. Thus the
frequency has been estimated to roughly 10 Hz with an uncertainty of
0.2/6 ≈ 0.03 Hz; a 60 fold reduction in the uncertainty in the frequency
estimate.

One last note before we begin the discussion of estimating the decay rate
constant, we note that all of the details in the wings of the absolute-value
spectrum shown in panel (C) are irrelevant to the frequency estimation
process. The posterior probability for the frequency has peaked in a region
that is very small compared to the scale of these wings, all of the informa-
tion about the frequency estimate is contained in a very small region around
the single largest peak in the spectrum. In the discrete Fourier transform,
the presence of multiple peaks may or may not be an indication of multi-
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ple resonances. Indeed it is easy to show that the generalize Lomb-Scargle
periodogram may have peaks that are related to the sampling scheme. The
only way to be certain that multiple resonances are presence, is to postu-
late a model containing multiple resonances and then compute the posterior
probability for the number of resonances.

The marginal posterior probability for the decay rate constant is shown
in Fig. 2(B). Here we again find that the parameter estimates from both
data sets are essentially identical in all of there relevant details. Both prob-
abilities peak at nearly the same value of the decay rate constant, both
have nearly the same width, and therefore the same standard deviation;
thus like frequency estimates, the estimates for the decay rate constants do
not strongly dependent on the sampling scheme. In principle the accuracy
of the estimates for the decay rate constants scale with time just like the
frequency estimates, of course, with decaying signals this is of little prac-
tical importance. Note that the decay rate constant has been estimated to
be about 3.2 ± 0.3 Sec.−1 at one standard deviation. The true value is 3
Sec.−1, so both sampling schemes give reasonable estimates of the decay
rate. If one were to try and estimate the decay rate constant from the
absolute-values spectrum, the half-width-at-half-height would normally be
used, here that is about 2 Sec.−1 and no claim about the accuracy of the
estimate would be made.

The marginal posterior probability for the amplitude of the sinusoid is
shown in Fig. 2(D). In this paper we did not directly talk about amplitude
estimation (see Bretthorst 1992 for a discussion of this subject), rather we
treated the amplitudes of the sine and cosine model functions as nuisance
parameters and removed them from the posterior probability for the other
parameters. We did this because we wished to explore the relationships
between frequency estimation using Bayesian probability theory and the
discrete Fourier transform. However, the Markov chain Monte Carlo sim-
ulation used Eq. (1.38) as the model for the real data, so it was a trivial
matter to compute the posterior probability for the amplitude. If you ex-
amine Fig. 2(D) you will note that now we do have a difference between the
uniform (open characters) and the nonuniformly nonsimultaneously sam-
pled data (solid lines). The amplitude estimates from the nonuniformly
nonsimultaneously sampled data are a good factor of 2 more precise than
the estimates from the uniformly sampled data. One might think that this
is caused by the nonuniform nonsimultaneous sampling and this would be
correct, but not for the obvious reasons. If you examine panel (D) you will
note that we have plotted a third curve (plus signs). This curve is the pos-
terior probability for the amplitude computed from data with the exact
same signal and signal-to-noise ratio, but having times that are nonuni-
formly nonsimultaneously sampled where the times were generated from a
uniform random number generator. We will call this data set the uniform-
randomly sampled data. Note that the height and width of the posterior
probabilities computed from both the uniformly and the uniform-randomly
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sampled data are essentially the same, so by itself the nonuniform nonsi-
multaneous sampling did not cause the amplitude estimates to improve.
The amplitude estimate improved because exponential sampling gathered
more data where the signal was large. The accuracy of the amplitude es-
timate is proportional to the standard deviation of the noise and inversely
proportional to square root of the effective number of data values. Because
exponential sampling gathered more data where the signal was large, its
effective number of data values was larger and so the amplitude estimate
improved. In this case, the improvement was about a factor of 2, so the ex-
ponential sampling had an effective number of data values that was about a
factor of 4 larger than for the uniformly or uniform-randomly sampled data.
This fact is also reflected in differing heights of the absolute value spectra
plotted in Fig. 2(C). The peak height of an absolute value spectrum is
proportional to the square root of the effective number of data values. In
panel (C) the spectra computed from the uniformly sampled data set, open
characters, is roughly a factor of 2 lower than the height of the spectrum
computed from the exponentially sampled data set, solid line.

5 Summary and Conclusions

Probability theory generalizes the Lomb-Scargle periodogram roughly as
follows: in uniformly or nonuniformly sampled real data, the sufficient
statistic for estimating the frequency of a single stationary sinusoid is the
Lomb-Scargle periodogram. When the function Z(ti) is not a constant,
probability theory generalized the Lomb-Scargle periodogram to include
this modulation. For a stationary sinusoid, when the data are quadrature
simultaneously sampled, probability theory simplifies the Lomb-Scargle pe-
riodogram to a Schuster periodogram. When the sinusoid is not station-
ary, the sufficient statistic becomes a weighted power spectrum where the
weighting function is given by Z(t). Finally, when the data are nonuni-
formly nonsimultaneously sampled, the sufficient statistic is the generalized
Lomb-Scargle periodogram.

In a literal sense, probability theory does no such thing as generalize the
discrete Fourier transform or the Lomb-Scargle periodogram. Probability
theory simply tells one how to analyze a particular problem optimally. For
estimation of a sinusoidal frequency, the sufficient statistics turn out to be
related to the discrete Fourier transform. This was, for us, a happy coin-
cidence because it enabled us to interpret the results of the analysis in a
way that sheds light on the discrete Fourier transform and how it should
be used. In the appropriate limits, the discrete Fourier transform power
spectrum, the Schuster periodogram, the Lomb-Scargle periodogram and
the generalizations presented in this paper are all optimal frequency esti-
mators for the single sinusoidal case. However, when the true signal deviate
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from this model, for example when there are multiple sinusoids or the data
contain a trend, then these statistics are never optimal frequency estima-
tors, and there are always other statistics that will improve the resolution
of the multiple frequencies or properly account for trend in the data, see
Bretthorst 1988, and 2000.

Aliasing is a general phenomenon and exists in both uniformly and
nonuniformly nonsimultaneously sampled data for exactly the same rea-
son. It is the fact that all of the times may be expressed as an integer
multiple of an effective dwell time that is the cause of aliasing. Two data
sets differing only in how precisely the times are recorded generally have
different Nyquist critical frequencies.

The analysis in this paper generalized the concept of bandwidth and
showed that uniformly simultaneously sampled data have the smallest pos-
sible bandwidth. The addition of any nonuniformly nonsimultaneously sam-
pled data always increases the Nyquist critical frequency and thus increases
the bandwidth. The Nyquist critical frequency for nonuniformly nonsimul-
taneously sampled data may be many orders of magnitude greater than
that for uniformly simultaneously sampled data having similar acquisition
parameters. Consequently, nonuniformly nonsimultaneously sampled data
can have tremendous advantages over uniformly sampled data because the
critical time is not how fast one can sample data, but how accurately one
can vary the acquisition of each data item. This opens up the possibil-
ity of measuring very high frequencies with bandwidths much larger than
previously possible.
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FIGURE 2. Estimating The Parameters
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Fig. 2. The posterior probability of the parameters was computed for the uni-

formly and nonuniformly nonsimultaneously sampled data, open characters and

solid lines respectively. Panel (A) is the posterior probability for the frequency,

(B) the decay rate constant, (D) the amplitude. Panel (C) is the absolute-value

spectrum computed for the two data sets. The extra curve in panel (D), the plus

signs, was computed from a nonuniformly nonsimultaneously sample data set

having uniformly sampled times, see text for details.


