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Abstract. For spectroscopic measurements there are good reasons why one might

consider using nonuniformly nonsimultaneously sampled complex data. The pri-

mary one is that the e�ective bandwidth, the largest spectral window free of aliases,

can be much wider than with uniformly sampled data. In this paper we discuss

nonuniformly nonsimultaneously sampled data, describe how these data are tradi-

tionally analyzed, analyze them using probability theory and show how probability

theory generalizes the discrete Fourier transform: �rst for uniformly sampled data,

then for nonuniformly sampled data and �nally for nonuniformly nonsimultane-

ously sampled data. These generalizations demonstrate that aliases are not so

much removed by nonuniform nonsimultaneous sampling as they are moved to

much higher frequencies.

1. Introduction

The problem of estimating the frequency of a sinusoid occurs in many di�erent

areas of science and engineering. Such data may be sampled in time, space, angle,

or a host of other ways. In the discussions which follow, we will speak of the data

as if they were sampled in time with the understanding that everything we say

is equally applicable to data sampled in space, etc. Usually the data associated

with frequency estimation are uniformly sampled; that is to say, the time inter-

val between data samples, the dwell time, is a constant. From the standpoint of

estimating a frequency, uniform samples are not more informative than nonuni-

form samples; they are more convenient because of the almost universal use of

the fast discrete Fourier transform1 in the frequency estimation procedure. How-

ever, in many cases, it is simply not possible to gather uniformly sampled data.

For example, astronomic observations might be interrupted by clouds or the sun

coming up. Additionally, as we shall see, there are good reasons why one might

want to gather nonuniformly sampled data. If one has nonuniform samples, for

1In this paper when we say \discrete Fourier transform" we mean the discrete Fourier trans-

form of uniformly sampled data.
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whatever reason, they cannot be analyzed using the discrete Fourier transform.

Other analysis techniques must be used.

One such technique is the use of the Lomb-Scargle periodogram [1{3]. The

Lomb-Scargle periodogram was derived using a stationary sinusoidal model with

a frequency dependent phase shift. Nonlinear least-squares was used by Lomb

to constrain the sine and cosine amplitudes to the values that minimized Chi-

Squared. The resulting statistic turns out to be the suÆcient statistic that one

would derive using Bayesian probability theory for estimating the frequency given

the Lomb model, see Appendix A for the details of this derivation. A suÆcient

statistic is a function of the data that summarizes all of the information in the

data about the hypothesis of interest. Lomb's derivation was based on an intuitive

device rather than probability theory, consequently one could never be sure that

the statistic uses all of the information in the data, nor can intuition alone tell one

what function of the suÆcient statistic is appropriate for frequency estimation.

In the case of the Lomb-Scargle periodogram, the periodogram is typically

normalized by one half the expected mean-square data value. This amounts to es-

timating the variance of the noise and then using the log-likelihood as the statistic

for frequency estimation. However, its clear from the derivations given in Appendix

A, that this normalization will result in parameter estimates that are much too

conservative; because it fails to account for how well the sinusoid �ts the data, and

so in high signal-to-noise will missestimate the uncertainty in the parameters esti-

mates. Additionally, when calculating the Lomb-Scargle periodogram the data are

often modi�ed prior to computing the periodogram, for example as in Numerical

Recipes [14]. The modi�cation consists of computing the average data value and

then subtracting that average from the data prior to computing the periodogram.

This device is commonly used to account for a constant o�set in the data. How-

ever, it guarantees that the data can show no evidence of low frequencies. If one

does the probability theory calculations using a constant plus a stationary sinusoid

as the model, probability theory will never lead one to subtract the average from

the data. Rather, other statistics will appear that account for the presence of the

constant in a consistent manner.

The Bayesian calculations presented in this paper will be for quadrature NMR

data that has been sampled at di�ering times and with di�ering numbers of data

values in each channel. We will derive the solution to the frequency estimation

problem given an exponentially decaying sinusoidal model. Then, through a series

of simpli�cations, we will reduce this calculation to the case of frequency estima-

tion for a stationary sinusoid given real (nonquadrature) data. In the process of

making these simpli�cations, we will encounter the Lomb-Scargle periodogram, the

Schuster periodogram [4] and a weighted power spectrum as the suÆcient statistic

for frequency estimation. Because each will have been derived from the rules of

probability theory we will see the exact conditions under which each is an opti-

mal frequency estimator. Thus, by making these simpli�cations, we will see how

probability theory generalizes the discrete Fourier transform to handle nonuni-

formly nonsimultaneously sampled data and what is happening to the aliasing

phenomenon in these data.



\Nonuniform Sampling: Bandwidth and Aliasing" 3

2. The Discrete Fourier Transform

When the data consist of uniformly sampled time domain data containing some

type of harmonic oscillations, the discrete Fourier transform is almost universally

used as the frequency estimation technique. This is done for a number of reasons,

but primarily because the technique is fast and experience has shown that the

frequency estimates obtained from it are often very good. The discrete Fourier

transform, F(fk), is de�ned as:

F(fk) =
N�1X
j=0

d(tj) expf2�fktjig (1)

where i =
p�1, d(tj) is the complex discretely sampled data,

d(tj) = dR(tj) + idI(tj); (2)

and is composed of real data samples, dR(tj), and imaginary data samples, dI(tj),

N is the total number of complex data samples and fk is the frequency. For

uniformly sampled data, the times are given by

tj = j�T; j 2 f0; 1 : : : N � 1g; (3)

where �T is the dwell time, the time interval between data samples, and the

frequencies are given by

fk =
k

N�T
k 2

�
�N

2
;�N

2
+ 1; � � � ; N

2

�
: (4)

These frequencies are the ones at which a discrete Fourier transform is exactly

equal to the continuous Fourier transform of a bandlimited function [5,6]. The

largest frequency interval free of aliases for a bandlimited function is given by

�fNc � f � fNc (5)

and is called the bandwidth. The frequency fNc is called the Nyquist critical

frequency and is given by

fNc =
1

2�T
: (6)

Nothing would prohibit one from taking fk as a continuous variable and eval-

uating Eq. (1) at di�erent frequencies. Indeed, this is exactly what the common

practice of zero-padding2 does. After all, adding zero to a sum does not change

that sum, so for any given frequency zero padding has no e�ect in Eq. (1). The

only e�ect is in Eq. (4): changing N changes the frequencies at which Eq. (1) is

evaluated.

2To zero pad a data set, one adds zeros to the end of a data set, sets N to the length of this

new zero padded data set and then runs a fast discrete Fourier transform on the zero padded

data.
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If we expand the right-hand side of Eq. (1), we obtain

F(fk) = R(fk) + iI(fk) (7)

where

R(fk) =

N�1X
j=0

[dR(tj) cos(2�fktj)� dI sin(2�fktj)] (8)

and

I(fk) =

N�1X
j=0

[dR(tj) sin(2�fktj) + dI cos(2�fktj)] (9)

are the real and imaginary parts of the discrete Fourier transform.

Three di�erent ways of viewing the results of the discrete Fourier transform

are common: the absorption spectrum, the power spectrum and the absolute-value

spectrum. The absorption spectrum, the real part of an appropriately phased dis-

crete Fourier transform, is commonly used in NMR. In NMR the sinusoids usually

have the same phase; consequently if one multiplies Eq. (7) by expfi(� + T0fk)g,
the phase of the sinusoids can be made to cancel from the discrete Fourier trans-

form. The two parameters, � and T0, are the zero- and �rst-order phase corrections,

and must be estimated from the discrete Fourier transform. An absorption spec-

trum's usefulness is limited to problems in which the sinusoids have the same

phase parameters. This is common in NMR, but not with other physical phenom-

ena, consequently, we will not discuss the absorption spectrum further.

The power spectrum is de�ned as

Power(fk) =
R(fk)

2 + I(fk)
2

N
(10)

and is the square of the absolute-value spectrum. It has been shown by Bretthorst

[7{9] and Woodward [10], and as we will demonstrate shortly, the power spectrum

is the suÆcient statistic in a Bayesian calculation for the posterior probability for

the frequency given a single stationary sinusoidal model.

In this paper we will make several plots of the discrete Fourier transform and its

generalizations to nonuniformly nonsimultaneously sampled data. To allow direct

comparison of these plots we will always plot the same function of the data, the

base 10 logarithm of the posterior probability for the frequency of a stationary

sinusoid independent of the phase, amplitude and variance of the noise, Eq. (36)

below. For uniformly sampled quadrature data, this probability is a simple function

of the power spectrum, see Bretthorst [11] for a more extended discussion of the

relationship between the discrete Fourier transform and the posterior probability

for a stationary frequency.

To illustrate the use of the discrete Fourier transform as a frequency estimation

tool, suppose we had the data shown in Fig. 1(A). The signal in this simulated

data is an exponentially decaying sinusoid of amplitude 10 plus Gaussian noise of

zero mean and standard deviation one. These data were generated with a dwell

time of �T = 0:01 Sec. One hundred complex data values were generated at times
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Figure 1. A Uniformly Sampled Exponentially Decaying Sinusoid

-10

-5

0

5

10

0 0.25 0.5 0.75 1

Si
gn

al
 I

nt
en

si
ty

Time in Sec.

(A)

0

5

10

15

20

25

30

35

-50 -40 -30 -20 -10 0 10 20 30 40 50

B
as

e 
10

 L
og

 P
(f

|D
I)

Frequency in Hertz

(B)

Fig. 1. Panel (A) is computer simulated data. It contains a single exponentially decaying

sinusoidal signal plus noise. The lines represent the real and imaginary parts of the

sinusoid. The locations of the data values are denoted by the isolated characters. The

Nyquist critical frequency for this data set is fNc = 50 Hz. Panel (B) is a plot of the base

10 logarithm of the posterior probability for the frequency of a stationary sinusoid given

these data.

ranging from 0 to 0.99 seconds. The frequency is 10 Hz, and the decay rate constant

is 3 Sec.�1. The real and imaginary data values are represented by the isolated

characters in Fig. 1(A). The lines represent the real and imaginary parts of the

true sinusoid. The Nyquist critical frequency for these data is one-half the inverse

of the dwell time:

fNc =
1

2�T
=

1

2(0:01 Sec.)
= 50 Hz: (11)

Figure 1(B) is a plot of the base 10 logarithm of the posterior probability over the

bandwidth (-50 Hz � f � 50 Hz). This base 10 logarithm starts at essentially zero

and then increases some 30 orders of magnitude, coming to a very sharp peak at

10 Hz.

We would like to investigate the aliasing phenomenon. To do this we must

evaluate the discrete Fourier transform outside the bandwidth and this cannot

be done using the fast discrete Fourier transform. Because we are plotting the

base 10 logarithm of the posterior probability for the frequency of a stationary

sinusoid, we can simply evaluate the posterior probability for any frequency and

the suÆcient statistic will be the power spectrum evaluated at that frequency;

we are not restricted to the frequencies fk speci�ed by Eq. (4). The resulting

plot is shown in Fig. 2. Outside of the interval (�fNc � f � fNc), the base

10 logarithm of the posterior probability, and thus the power spectrum and the

discrete Fourier transform, are periodic functions of f with a period equal to the

frequency interval spanned by the bandwidth. In Fig. 2, the frequency interval

plotted is (�10fNc � f � 10fNc), so there should be 10 peaks in this range as

Fig. 2 shows.
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Figure 2. The Log10P (f jDI) At Frequencies Greater Than fNc
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Fig. 2. The reason that the discrete Fourier transform of uniformly sampled data is rarely

computed at frequencies greater than the Nyquist critical frequency is simply that the

discrete Fourier transform is a periodic function with a period equal to the bandwidth

2fNc.

To understand why the discrete Fourier transform is a periodic function of

frequency, suppose we wish to evaluate the discrete Fourier transform at the fre-

quencies

fk =
k

N�T
; k = mN + k0; k0 2

�
�N

2
;�N

2
+ 1; � � � ; N

2

�
: (12)

By itself the index k0 would specify the normal frequency interval, Eq. (4), of a

discrete Fourier transform. However, the integer m shifts this frequency interval

up or down by an integer multiple of the total bandwidth. If m = 0, we are in the

interval (�fNc � fk � fNc); if m = 1, we are in the interval (fNc � fk � 3fNc),

etc. If we now substitute Eqs. (12) and (3) into the discrete Fourier transform,

Eq. (1), the reason the discrete Fourier transform is periodic becomes readily

apparent

F(fk0) �
N�1X
j=0

d(tj) exp

�
2�i(mN + k0)j

N

�
; (13)

=

N�1X
j=0

d(tj) exp f2�imjg exp
�
2�ik0j

N

�
; (14)
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=

N�1X
j=0

d(tj) exp

�
2�ik0j

N

�
; (15)

=

N�1X
j=0

d(tj) exp f2�ifk0tjg : (16)

In going from Eq. (14) to (15) a factor, expfi(2�mj)g, was dropped because both

m and j are integers, so (2�mj) is an integer multiple of 2�, and the complex

exponential is one. Aliases occur because the complex exponential canceled leaving

behind a discrete Fourier transform on the interval (�fNc � fk � fNc). The

integer m speci�es which integer multiple of the bandwidth is being evaluated

and will always be an integer no matter how the data are collected. However, the

integer j came about because the data were uniformly sampled. If the data had not

been uniformly sampled the relationship, tj = j�T , would not hold, the complex

exponential would not have cancelled, and aliases would not have been present.

Because frequency estimation using the discrete Fourier transform was not de-

rived using the rules of probability theory, there is no way to be certain that the

estimates we obtain are the best we could do. What is needed is the solution to

the single frequency estimation problem using Bayesian probability theory. Conse-

quently, in the next section we analyze this problem, then in the following sections

we will derive the conditions under which the discrete Fourier transform power

spectrum is a suÆcient statistic for single frequency estimation and we will see

how probability theory generalizes the discrete Fourier transform to nonuniformly

nonsimultaneously sampled data, and we will see the e�ect of these generalizations

on the aliasing phenomenon.

3. Single-Frequency Estimation

The problem to be addressed is the estimation of the frequency of a single exponen-

tially decaying sinusoid independent of the amplitude and phase of the sinusoid,

given nonuniformly nonsimultaneously sampled quadrature data. First, what do

we mean by nonuniformly nonsimultaneously sampled quadrature data? \Quadra-

ture" simply means we have a measurement of the real and imaginary parts of a

complex signal. So nonuniformly nonsimultaneously sampled quadrature data are

measurements of the real and imaginary parts of a complex signal for which the

measurements of the real and imaginary parts of the signal occur at di�erent times.

But if we have di�ering numbers of data samples with di�ering sample times, we

really have two data sets: a real and an imaginary data set.3 The real data set will

be designated as DR � fdR(t1) � � � dR(tNR)g, where dR means a real data sample,

ti is the time the data sample was acquired, and NR is the total number of data

samples in the real data set. Similarly, the imaginary data set will be denoted by

DI � fdI(t1) � � � dI(tNI )g. We impose no restrictions on the number of data sam-

ples or the acquisition times in either channel. They could be the same or di�erent,

3Of course, when we say an \imaginary data set" we mean only that the data are a measure-

ment of the imaginary part of the signal; not that the data are imaginary numbers.



8 G. LARRY BRETTHORST

depending on the limit we investigate. Note that the times do not carry a channel

indication so the context within the equations will have to establish which times

we are referring to. If the equation context fails, we will clarify it in the text.

To perform any calculation using probability theory, the hypothesis of interest

must be related to the information we actually possess. For the problem of esti-

mating the frequency of a complex sinusoid, this means relating the frequency to

the quadrature data through a model. If the complex data are given by Eq. (2),

then the data and the sinusoid are related by

d(tj) = A exp f�ftjg+ n(tj): (17)

The complex amplitude is given by A = A1 � iA2, and is equivalent to the ampli-

tude and phase of the sinusoid. The complex frequency, f = �+2�if , contains two

parameters: the decay rate constant, �, and the frequency, f . Note the minus signs

in the de�nition of the complex amplitude and the one in Eq. (17). These signs

correspond to a convention establishing what is meant by a positive frequency. The

signs were chosen to model the data produced by a Varian NMR spectrometer.

Other vendors use di�erent conventions. Changing these conventions will change

none of the conclusions that follow and very few of the actual details of the calcu-

lations. The decay rate constant, �, has units of inverse seconds, the frequency, f ,

Hertz, and the times, tj , seconds. The quantity n(tj) represents the complex noise

at time tj . Note that in this equation the times, tj , simply designate the times at

which we actually have data. If the datum happen to be a measurement of the

real part of the signal, then the time would be associated with the real data set,

and similarly for the imaginary part of the signal.

If we separate Eq. (17) into its real and imaginary parts, we have for the real

part

dR(ti) = MR(ti) + nR(ti) (18)

MR(ti) � [A1 cos(2�fti)�A2 sin(2�fti)] exp f��tig (19)

and for the imaginary part we have

dI(tj) = MI(tj) + nI(tj) (20)

MI(tj) � � [A1 sin(2�ftj) +A2 cos(2�ftj)] exp f��tjg ; (21)

where nR(ti) and nI(tj) represent the noise in the real and imaginary data at times

ti and tj . The quantity that we would like to estimate is the frequency, f , and we

would like to estimate it independent of the amplitudes and variance of the noise.

The decay rate constant, �, will sometimes be treated as a nuisance parameter,

sometimes estimated, and sometimes taken as a given, depending of our purpose

at the time. For now we will estimate it.

In probability theory as logic, all of the information about a hypothesis is

summarized in a probability density function. For this problem, the probability

density function is designated as P (f�jDRDII), which should be read as the joint

posterior probability for the frequency and decay rate constant given the real and
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imaginary data sets and the information I. The information I is all of the other

information we have about the parameters appearing in the problem. The joint

posterior probability for the frequency and decay rate constant is computed from

the joint posterior probability for all of the parameters, P (f�A1A2�jDRDII), by

application of the sum and product rules of probability theory:

P (f�jDRDII) =

Z
dA1 dA2 d� P (f�A1A2�jDRDII): (22)

Using the product rule, the right-hand side of this equation may be factored to

obtain

P (f�jDRDII) =

Z
dA1 dA2 d� P (f�A1A2�jI)P (DRDI jf�A1A2�I): (23)

We will assume that the prior, P (f�A1A2�jI), can be factored into independent

priors for each parameter, and these priors will be assigned an appropriately un-

informative prior probability (uniform priors for the amplitudes, and a Je�reys'

prior for the standard deviation of the noise). The uninformative prior for the

frequency would normally be taken as a uniform prior. The uninformative prior

for the decay rate constant would typically be taken as a Je�reys' prior. How-

ever, in what follows we will sometimes wish to estimate the decay rate constant,

sometimes eliminate it as a nuisance parameter and sometimes treat it as a given.

Consequently, we will specify which prior we are using for the decay rate constant

at the appropriate time.

If the two data sets are logically independent, the joint direct probability for

the data, P (DRDI jf�A1A2�I), will factor as

P (DRDI jf�A1A2�I) = P (DRjf�A1A2�I)P (DI jf�A1A2�I); (24)

and the joint posterior probability for the frequency and decay rate constant be-

comes

P (f�jDRDII) =

Z
dA1 dA2

d�

�
P (DRjf�A1A2�I)P (DI jf�A1A2�I); (25)

where, for now, we are using a uniform prior for the decay rate constant. The two

direct probabilities for the data are to be assigned given that one knows all of the

parameters appearing in the model. But if one knows all of these parameters, then

from Eqs. (18)-(20) one can simply compute the noise in the real and imaginary

data sets. If one can assign a probability for the noise one can then assign these

two direct probabilities. For the reasons explained in Jaynes [12], and further

elaborated by Bretthorst [13], the probability for the noise will be assigned as

a Gaussian and the joint posterior probability for the frequency and decay rate
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constant is given by

P (f�jDRDII) /
Z
dA1 dA2

d�

�

� ��NR exp

(
� 1

2�2

NR�1X
i=0

[dR(ti)�MR(ti)]
2

)

� ��NI exp

(
� 1

2�2

NI�1X
j=0

[dI(tj)�MI(tj)]
2

)
:

(26)

The proportionality sign comes about because a number of constants have been

ignored. Substituting Eqs. (19) and (21) for MR(ti) and MI(tj) into Eq. (26), the

joint posterior probability for the frequency and decay rate constant is given by

P (f�jDRDII) /
Z
dA1 dA2

d�

�
��(NR+NI) exp

�
� Q

2�2

�
(27)

where

Q � (NR +NI)d2 � 2

2X
l=1

AlTl +

2X
k;l=1

gklAkAl: (28)

The mean-squared data value is de�ned as

d2 =
1

NR +NI

2
4NR�1X

i=0

dR(ti)
2 +

NI�1X
j=0

dI(tj)
2

3
5 : (29)

The projection of the data onto the model, the vector T , is given by

T1 �
NR�1X
i=0

dR(ti) cos(2�fti) expf��tig

�
NI�1X
j=0

dI(tj) sin(2�ftj) expf��tjg
(30)

and

T2 � �
NR�1X
i=0

dR(ti) sin(2�fti) expf��tig

�
NI�1X
j=0

dI(tj) cos(2�ftj) expf��tjg:
(31)

The matrix gkl is de�ned as

gkl �
�

a c

c b

�
; (32)
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with

a =

NR�1X
i=0

cos2(2�fti) expf�2�tig+
NI�1X
j=0

sin2(2�ftj) expf�2�tjg (33)

where the sum over the cosine uses the ti associated with the real data set, while

the sum over the sine uses the tj associated with the imaginary data set. Similarly,

b is de�ned as

b =

NR�1X
i=0

sin2(2�fti) expf�2�tig+
NI�1X
j=0

cos2(2�ftj) expf�2�tjg; (34)

where the sum over the sine uses the ti associated with the real data set, while the

sum over the cosine uses the tj associated with the imaginary data set. Finally, c

is de�ned as

c = �
NR�1X
i=0

cos(2�fti) sin(2�fti) expf�2�tig

+

NI�1X
j=0

sin(2�ftj) cos(2�ftj) expf�2�tjg;
(35)

where the sum over the cosine-sine product uses the ti associated with the real

data set, while the sum over the sine-cosine product uses the tj associated with

the imaginary data set.

The integrals over A1 and A2 are both Gaussian integrals and are easily eval-

uated. The integral over � is a gamma integral and is also easily evaluated. Eval-

uating this triple integral, one obtains

P (f�jDRDII) /
1p

ab� c2

h
(NR +NI)d2 � h2

i(2�NR�NI)=2
(36)

as the joint posterior probability for the frequency and decay rate constant. In

Fig. 1(B) and Fig. 2 it is the base 10 logarithm of this posterior probability density

function that is plotted as a function of frequency. In those plots we wished to

illustrate the relationship of the suÆcient statistic, h2, to the discrete Fourier

transform power spectrum, and for reasons that will become apparent shortly, we

set � = 0, thereby plotting the base 10 logarithm of the posterior probability for

the frequency of a stationary sinusoid|in spite of the fact that the resonance in

the simulated data was exponentially decaying. The suÆcient statistic, h2, is given

by

h2 � bT 2
1 + aT 2

2 � 2cT1T2

ab� c2
: (37)

While not obvious, it is this statistic that generalizes the discrete Fourier transform

to nonuniformly nonsimultaneously sampled data. This statistic will reduce to

the Lomb-Scargle periodogram, a weighted normalized power spectrum and the

Schuster periodogram under appropriate conditions.
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If we are interested in estimating both the frequency and decay rate constant,

Eq. (36) should be used. If we are interested in only the frequency, then the

decay rate constant is a nuisance parameter and should be removed by application

of the sum rule. A Je�reys' prior would be the appropriate uninformative prior

probability for the decay rate constant. The posterior probability for the frequency

is thus given by

P (f jDRDII) /
Z
d�

P (�jI)p
ab� c2

h
(NR +NI)d2 � h2

i(2�NR�NI)=2
: (38)

If the decay rate constant is a given, the prior, P (�jI), should be taken as a delta

function and the integral in Eq. (38) evaluated analytically. Otherwise, the integral

must be evaluated numerically. Finally, if we want the best estimate of the decay

rate constant, a bounded uniform prior probability for the frequency would be

appropriate, and one would compute

P (�jDRDII) /
Z

df
1

�
p
ab� c2

h
(NR +NI)d2 � h2

i(2�NR�NI)=2
: (39)

This integral must also be evaluated numerically, but because the integrand is a

very sharply peaked function of frequency, a Gaussian approximation works well.

4. How Probability Generalizes The Discrete Fourier Transform

We are now in a position to demonstrate how probability theory generalizes the

discrete Fourier transform and what the e�ect of this generalization is on the alias-

ing phenomenon. We mentioned earlier that the suÆcient statistic for frequency

estimation is related to a power spectrum, and we demonstrate that next. Several

simpli�cations must be made to reduce Eq. (37) to a power spectrum. First, we

must be estimating the frequency of a stationary sinusoid. A stationary sinusoid

has no decay, so � = 0. Second, the data must be uniformly sampled. But uni-

form sampling is not quite enough; the data must also be simultaneously sampled.

With these assumptions the matrix gkl, Eq. (32), simpli�es because c = 0 and

a = b = NR = NI = N , where N is the total complex data values. The suÆcient

statistic, Eq. (37), reduces to

h2 =
R(f)2 + I(f)2

N
(40)

and is the power spectrum de�ned in Eq. (10). The functions R(f) and I(f) were

de�ned earlier, Eqs. (8) and (9), and are the real and imaginary parts of the

discrete Fourier transform.

The Schuster periodogram, or power spectrum, is the suÆcient statistic for

frequency estimation in uniformly simultaneously sampled quadrature data given

a stationary sinusoidal model, but we already have two generalizations to the dis-

crete Fourier transform that were not contained in the de�nition, Eq. (1). First,

the frequency appearing in Eq. (40) is a continuous parameter; it is not in any way

restricted to discrete values. Probability theory indicates that there is information
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in the data at frequencies between the fk in the discrete Fourier transform. Second,

the frequency, f , is unbounded. Probability theory does not indicate that the fre-

quency must be less than the Nyquist critical frequency. Consequently, probability

theory is telling one that aliases are real indications of the presence of a frequency

and absolutely nothing in the data can tell one which is the correct frequency, only

prior information can do that.

The Schuster periodogram is an optimal frequency estimator for uniformly

simultaneously sampled quadrature data. However, this is not true for real data

where the statistic was originally proposed. To see this suppose we have a real

data set, so that either NI = 0 or NR = 0. The gkl matrix does simplify|

many of the sums appearing in Eqs. (33)-(35) are zero|but the matrix remains

nondiagonal and so Eq. (37) is the suÆcient statistic for this problem, and is

numerically equal to the Lomb-Scargle periodogram. The Schuster periodogram,

however, is never a suÆcient statistic for either real uniformly or nonuniformly

sampled data. It can only be derived as an approximation to the suÆcient statistic

for this problem. To derive it two approximations must be made in the gkl matrix.

First, the o�-diagonal element must be much smaller than the diagonal and so

can be approximated as zero. The second approximation assumes the diagonal

elements may be approximated by a = b = N=2. Both approximations ignore terms

on the order of
p
N and are good approximations when one has large amounts of

data. In this discussion we have implicitly assumed that the times appearing in

the cosine and sine transforms of the data making up the Schuster periodogram

were evaluated at the times one actually has data. Trying to interpolate the data

onto a uniform grid and then using a power spectrum is not justi�ed under any

circumstances. However, its hard to see how any bad results that one might obtain

after doing this are to be blamed on the Schuster periodogram.

Suppose now the signal is exponentially decaying with time, but otherwise the

data remain uniformly and simultaneously sampled. Examining Eq. (32), we see

that when the data are simultaneously acquired, c = 0 and a = b = Ne�, where

Ne� is an e�ective number of complex data values and is given by

Ne� =

N�1X
i=0

exp f�2�tig : (41)

The suÆcient statistic becomes

h2 =
R(f; �)2 + I(f; �)2

Ne�
: (42)

The e�ective number of complex data values is equal to the number of complex

data values, N , when the decay rate constant, �, is zero, and is approximately,

1=2�, for densely sampled signals which decay into the noise. The reason for this

behavior should be obvious: as the decay rate constant increases, for a �xed dwell

time, fewer and fewer data values contribute to the estimation process. When the

decay rate constant is large, the e�ective number of data values goes to zero and

the data are uninformative about either the frequency or the decay rate constant.
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The functions R(f; �) and I(f; �) are the real and imaginary parts of the

discrete Fourier transform of the complex data weighted by an exponential of

decay rate constant �. In a weighted discrete Fourier transform, one multiplies the

complex data by a weighting function

Complex Weighted Data = d(ti) expf��tig (43)

and then performs the discrete Fourier transform on the weighted data.

In spectroscopic applications many di�erent weighting functions are used. In-

deed Varian NMR software comes with exponential, Gaussian, sine-bell and a

number of others. In all of these cases, use of the weighting function in conjunc-

tion with a discrete Fourier transform amounts to estimating the frequency of a

single sinusoid having a decay envelope described by the weighting function. If the

weighting function does not mimic the decay envelope of the signal, then these

procedures are, from the standpoint of parameter estimation, less than optimal.

Of course most of these weighting functions were developed with very di�erent

ideas in mind than parameter estimation. For example, the sine-bell is intended to

increase resolution of multiple close lines, just as a Gaussian is used to transform

the line shape of the resonances from Lorentzian to Gaussian in the hope that

the Gaussian will be narrower in the frequency domain. Nonetheless, probability

theory indicates that all of these procedures are estimating the frequency of a

single sinusoid having a decay envelope described by the weighting function. The

better this weighting function describes the true decay of the signal, the better the

parameter estimates will be.

For exponential weighting, the spectroscopist must choose a value of �. This

is typically done so that the decay envelope of the weighting function matches the

decay of the signal. This is equivalent to trying to locate the maximum of the

joint posterior probability for the frequency and decay rate constant, Eq.(27). If

one makes a contour plot of this joint posterior probability, this plot will have

nearly elliptical contours with the major axis of the ellipse nearly parallel to the

decay rate constant axis (decay rate constants are less precisely estimated than

frequencies), while the minor axis will be nearly parallel to the frequency axis.

Thus, estimates of the frequency and decay rate constant are nearly independent

of each other. Consequently, if the spectroscopist can guess the decay rate constant,

even approximately, the frequency estimate he obtains will be almost as good as

that obtained by doing a thorough search for the location of the joint maximum.

It is commonly believed that matched weighting functions (matching the shape

of the weighting function to the observed decay of the data) increases the signal-

to-noise ratio in the resulting power spectrum at the expense of broadening the

peak, thereby decreasing the frequency resolution of the discrete Fourier transform.

This is correct if the discrete Fourier transform is used as a spectral estimation

procedure and one then tries to estimate multiple frequencies from this spectrum.

However, from the standpoint of probability theory, it is only the single largest

peak in the weighted discrete Fourier transform power spectrum that is relevant

to frequency estimation, and then it is only a very small region around the loca-

tion of the maximum that is of interest. All of the details in the wings around
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that peak are irrelevant to the estimation problem. If there are multiple peaks

in the power spectrum, probability theory will systematically ignore them: the

weighted power spectrum is the suÆcient statistic for single frequency estimation;

it does not estimate multiple frequencies, although one can show that under many

conditions the suÆcient statistic for the multiple frequency estimation problem is

related to the multiple peaks in a power spectrum [11]. Given a multiple-frequency

model, probability theory will lead one to other statistics that take into account the

nonorthogonal nature of the sinusoidal model functions. These multiple-frequency

models always result in parameter estimates that are either better than or essen-

tially identical to those obtained from a power spectrum. They will be essentially

identical to the power spectrum results when multiple, very well separated sinu-

soids are present, and they will always be better when overlapping resonances are

present|see Bretthorst [7{9,11,15{17] for details.

Suppose we have nonuniformly but simultaneously sampled data. What will

happen to the resulting Bayesian calculations? When we repeat the Bayesian cal-

culation we �nd that absolutely nothing has changed. The number of e�ective data

values, Ne�, is given by Eq. (41), the matrix gkl is given by Eq. (32), just as the

suÆcient statistic is given by Eq. (42), and the joint posterior probability for the

frequency and decay rate constant is given by Eq. (36). Here the generalization to

the discrete Fourier transform accounts for the fact that the times must be evalu-

ated explicitly, the formula, tj = j�T , does not hold and one must substitute the

actual time, ti and tj , into the equations. Missing observations, make no di�erence

whatever to probability theory. Probability theory analyzes the data you actually

obtain, regardless of whether the data are uniformly sampled or not. Indeed, in

Bayesian probability theory there is no such thing as a missing data problem.

Having allowed the data to be nonuniformly sampled, we are in a position to

see what is happening to the aliasing phenomenon. However, before addressing

this, there is one last generalization that we would like to make. This generaliza-

tion allows the data to be nonsimultaneously sampled. Because the samples are

nonsimultaneous, the sums appearing in Eqs. (8) and (9) are no longer correct. The

terms appearing in these equations are the sine and cosine transforms of the real

and imaginary data sets. When the data were simultaneously sampled, the sine

and cosine transforms could be combined into a single sum. For nonsimultaneous

time samples, this cannot be done. Each sine and cosine transform must have an

independent summation index. If you examine the projections of the model onto

the nonuniformly nonsimultaneously sampled data, Eqs. (30) and (31), you will

�nd this is exactly what probability theory has done. The function T1 corresponds

to the real part of the discrete Fourier transform and is the cosine transform of

the real data minus the sine transform of the imaginary data; however, now it

also accounts for the nonuniform nonsimultaneous times. Similarly, up to a minus

sign,4 T2 corresponds to the imaginary part of the discrete Fourier transform. So

the discrete Fourier transform has been generalized in the sense that the sine and

cosine transforms now have separate summation indices. However, there is more

to this generalization than using separate summation indices.

4The minus sign comes about because of the use of Varian sign conventions in Eq. (17).
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In the previous examples the matrix gkl, Eq. (32), was diagonal with diagonal

elements equal to the e�ective number of data values in each channel. For simulta-

neously sampled data, these are equal. For nonsimultaneously sampled data, the

diagonal elements remain the e�ective number of data values in each channel, but

these are no longer equal. For simultaneous data samples, the zero o�-diagonal el-

ement means that the integrals over the amplitudes are completely independent of

each other. In the model, the function multiplying each amplitude may be thought

of as an N dimensional vector. With nonsimultaneous samples these vectors are

linear combinations of each other. The magnitude of the o�-diagonal element is a

measure of how far from orthogonal these vectors are. Consequently, the suÆcient

statistic, Eq. (37), is now taking into account the fact that these vectors are not

orthogonal, the real and imaginary data can have di�erent numbers of data values

and that the e�ective number of data values is a function of both frequency and

decay rate constant.

5. Aliasing

Now that we have �nished discussing the generalizations of the discrete Fourier

transform to nonuniformly nonsimultaneously sampled data, we would like to in-

vestigate some of the properties of these calculations to show what has happened

to the aliasing phenomenon. Earlier, when we investigated the discrete Fourier

transform of uniformly sampled data, we showed that, for frequencies outside the

bandwidth, the power spectrum was a periodic function of frequency. What will

happen to these aliases when we use nonuniformly nonsimultaneously sampled

data? Are the aliases still there? If not, where did they go? One thing that should

be obvious is that in nonuniformly nonsimultaneously sampled data the Nyquist

critical frequency does not apply, at least not as previously de�ned, because the

times are nonuniformly sampled. Consequently, nonuniformly nonsimultaneously

sampled data will not su�er from aliases in the same way that uniformly simulta-

neously sampled data does.

To demonstrate this, we will again use simulated data. The simulated data will

have exactly the same signal as the data shown in Fig. 1(A). The only di�erence

between these two data sets will be the times at which the data were acquired. The

nonuniformly nonsimultaneously sampled simulated data are shown in Fig. 3(A).

In generating the times at which we have data we had to choose a sampling scheme.

On some spectrometers it is possible to sample data exponentially, so we choose

exponential sampling. In an exponentially sampled data set, a histogram of the

time samples would follow an exponential distribution. Thus, there are more data

samples at short times, and exponentially fewer at longer times. However, the

discussion here pertains to all nonuniformly nonsimultaneously sampled data, not

just to data with times that are exponentially sampled. The base 10 logarithm

of the posterior probability for the frequency of a stationary sinusoid is shown in

Fig. 3(B). This plot spans a frequency interval that is ten thousand times larger

than the corresponding plot shown in Fig. 1(B). In Fig. 2(B), when we extended

the region of interest to �10fNc = �500 Hz we had 10 aliases. Yet here we have

gone to �50 kHz and there are no aliases|where did the aliases go? Why do these
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Figure 3. A Nonuniformly Nonsimultaneously Sampled Exponentially Decaying Sinusoid
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Fig. 3. Panel (A) is computer simulated data. It contains the same exponentially decaying

sinusoidal signal as shown in Fig. 1(A) plus noise of the same standard deviation. The lines

represent the real and imaginary parts of the sinusoid. The location of the nonuniformly

nonsimultaneously sampled data values are denoted by the isolated characters. Panel (B)

is the base 10 logarithm of the posterior probability for the frequency given a stationary

sinusoid model using these data. Note that this plot spans 10,000 times the Nyquist

critical frequency for the uniformly sampled version of this data set shown in Fig. 1(A).

data seem to have a bandwidth that is at least 10,000 times larger than in the �rst

example?

We showed earlier in Eqs. (13)-(16) that aliases come about because of the

integer j in tj = j�T , specifying the time at which each uniformly simultaneously

sampled data item was acquired. In the present problem, nonuniformly nonsimul-

taneously sampled data, there is no �T such that all of the acquisition times are

integer multiples of this time; not if the times are truly sampled randomly. How-

ever, all data and times must be recorded to �nite accuracy. This is true even

of the simulated data shown in Fig. 3(A). Consequently, there must be a largest

e�ective dwell time, �T 0, such that all of the times (both the real and imaginary)

must satisfy

tl = kl�T
0 tl 2 fReal ti or Imaginary tjg (44)

where kl is an integer. The subscript l was added to k to indicate that each of the

times tl requires a di�erent integer kl to make this relationship true. Of course,

this was also true for uniformly sampled data: its just that for uniformly sampled

data the integers were consecutive, kl = 0; 1; � � �N � 1. The e�ective dwell time is

always less than or equal to the smallest time interval between data items, and is

the dwell time one would have had to acquire data at in order to obtain a uniformly

sampled data set with data items at each of the times ti and tj . The e�ective dwell

time, �T 0, can be used to de�ne a Nyquist critical frequency

fNc =
1

2�T 0

: (45)
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Aliases must appear for frequencies outside the bandwidth de�ned from �T 0.

The reason that aliases must appear for frequencies outside this bandwidth can

be made apparent in the following way. Suppose we have a hypothetical data set

that is sampled at �T 0. Suppose further, the hypothetical data are zero everywhere

except at the times we actually have data, and there the data are equal to the

appropriate dR(ti) or dI(tj). If we now compute the discrete Fourier transform of

this hypothetical data set, then by the analysis done in Eqs. (13)-(16) the Nyquist

critical frequency of this data set is 1=2�T 0 and frequencies outside the implied

bandwidth are aliased. Now look at the de�nitions of T1 and T2, Eqs. (30) and (31),

for the data set we actually have. You will �nd that these quantities are just the

real and imaginary parts of the discrete Fourier transform of our hypothetical data

set. The zeros in the hypothetical data set cannot contribute to the sums in the

discrete Fourier transform: they act only as place holders, and so the only part

of the sums that survive are just where we have data. By construction that is

just what Eqs. (30) and (31) are computing. So aliases must appear at frequencies

greater than this Nyquist critical frequency.

For the data shown in Fig. 3, the times and the data were recorded to 8

decimal places in an ASCII �le. This �le was then used by another program to

compute the posterior probability for the frequency, Eq. (37). Because the data

were recorded to 8 decimal places, a good guess for the e�ective dwell time would

be �T 0 = 10�8 Sec. This would correspond to a Nyquist critical frequency of fNc =

5�107 Hz. The �rst alias of the 10 Hz frequency should appear at 100,000,010 Hz.

If we evaluate the base 10 logarithm of the posterior probability at frequencies

given (10+n�106) Hertz, we should see peaks at n = 100, 200, 300 etc. This plot

is shown in Fig. 4. Note that the aliases are right at the expected frequencies.

An extensive search from zero up to 100 MHz uncovered no aliases prior to the

one just above 100 MHz. This suggests that the e�ective bandwidth of the 100

complex data values shown in Fig. 3(A) is 100 MHz! That is one million times

larger than the bandwidth of the data shown in Fig. 1. Indeed, the e�ective dwell

time, �T 0, was de�ned as the maximum time for which all of the ti and tj are

integer multiples of �T 0. The Nyquist critical frequency computed from �T 0 is the

smallest frequency for which the argument of the complex exponential in Eq. (14)

is an integer multiple of 2�. Consequently, 1=2�T 0 is the Nyquist critical frequency

for these data and there are no aliases within this implied bandwidth.

The fact that the data was recorded to 8 decimal places and that the bandwidth

of this simulated data set is 108 Hz brings up another curious thing about aliases.

Aliasing is primarily a phenomenon that concerns the times in the discretely sam-

pled data, the data itself are almost irrelevant to aliasing. In the example we are

discussing the times were recorded to 8 decimal places. If we had recorded the

times to only 7 decimal places the aliases would have been in di�erent places. If

the last signi�cant digit in the times is truncated, the bandwidth will be at least

a factor of 10 lower, and the aliases will be in di�erent places. Of course we must

qualify this somewhat, in the case we are discussing, a change in the 8'th decimal

place changes the sines and cosines so little that the only noticeable e�ect is on the

location of the aliases. However, if we were to continue truncating decimal places

we will eventually reach the point where the times are so far from the correct
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Figure 4. The Log10P (f jDI) At Intervals Of 1 MHz
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Fig. 4. Given the data shown in Fig. 3(A) aliases should appear every 100 MHz. Here we

have evaluated the logarithm of the posterior probability for the frequency of a stationary

sinusoid at frequencies given by 10 + n� 106 Hz. Aliases should appear at n = 100, 200,

300, etc.

values that we are essentially computing nonsense.

So far we have shown that the data have an e�ective bandwidth of 1=�T 0

but that is not quite the same thing as showing that frequencies anywhere in this

100 MHz interval can be correctly estimated. There is another time, the minimum

time between data values, �TM , which might be of some importance. It might

be thought that the data can show no evidence for frequencies outside a band of

width 1=�TM . In the data set shown in Fig. 3(A), �TM = 0:00000488 Sec. This

would correspond to a bandwidth of roughly 200 kHz, a tremendous frequency

range, but smaller than the e�ective bandwidth of 100 MHz by a factor of roughly

500. Which is correct?

The arguments given earlier prove that it is the e�ective dwell time, �T 0,

and not the minimum interval between data values, �TM , that is the important

quantity. However, to illustrate that �T 0 is the critical time, it is a simple matter

to generate data that contain a frequency in the range ( [1=�TM ] < f < [1=�T 0] )

and then compute the base 10 logarithm of posterior probability for the frequency

of a stationary sinusoid over the entire range (0 � f � 1=�T 0). From a practical

standpoint this is nearly impossible for data with a Nyquist critical frequency of

50 MHz; this frequency will have to be lowered. This can be done by truncating the

exponentially sampled times to 5 decimal places, and then generating the simulated
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Figure 5. Which Is The Critical Time: �T 0 Or �TM?
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Fig. 5. Panel (A) is computer simulated data. Except for the frequency, it contains the

same signal as that shown in Fig. 1(A). The frequency in these data is 50 kHz. The

positions of the nonuniformly nonsimultaneously sampled data values are denoted by the

isolated characters. Panel (B) is the base 10 logarithm of the posterior probability for

the frequency of a stationary sinusoid given these data.

signal using these truncated times. Truncating the times lowers the Nyquist critical

frequency to 50 kHz. Additionally, when these simulated data shown in Fig. 5(A)

were generated, no times were generated closer together than 0.0001 Sec. This time

corresponds to a critical frequency of 5 kHz; so there is a factor of 10 di�erence

between the Nyquist critical frequency and the frequency calculated from �TM .

The simulated acquisition parameters used in generating these data are similar to

those used previously, i.e., NR = NI = 100, � = 3 Sec.�1, Amplitude = 10, �

= 1. The only di�erence is that the simulated frequency is 50 kHz, a full factor

of 5 higher than the minimum sampling time would give as the highest resolvable

frequency, and equal to the Nyquist critical frequency for these data. However,

the region plotted (0 � f � 100 kHz), has been shifted upward by 50 kHz, so the

50 kHz frequency is in the middle of the plotted region, and this region should be

free of aliases. The base 10 logarithm of the posterior probability for the frequency

of a stationary sinusoid is shown in Fig. 5(B). It was evaluated at every 1 Hz from

0 to 100,000 Hz. This frequency resolution is more than enough to ensure that if

aliases exist, multiple peaks would be present in this plot. Note that there is a

single peak and it is located at 50 kHz, the frequency of the simulated resonance.

So the critical time is indeed �T 0 and the bandwidth of these data is 100 kHz.

Having shown that the critical time is the e�ective dwell time �T 0 and that

there are no aliases in the full bandwidth implied by �T 0, one might be tempted

to think that that is the end of the story. However, that is not quite correct.

While there are no true aliases in the bandwidth implied by �T 0, it is possible

for there to be multiple peaks which are artifacts related to the e�ective dwell

time. These artifacts are not aliases in the sense that they are not exact replicas

of the main peak; rather they are evidence for the resonance, and their height is
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Figure 6. How Nonuniform Sampling Destroys Aliases
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Fig. 6. Panel (A) is the base 10 logarithm of the posterior probability for the frequency of

a stationary sinusoid using the data shown in Fig. 1(A) with four additional data values

with sample times given by 0.001, 0.015, 0.025, and 0.037 seconds respectively. These

four data values were generated using the same signal and signal-to-noise ratio as those

shown in Fig. 1(A). The only di�erence is the nonuniformly sampled times. Note that

we now have multiple peaks, but they are not true aliases because they are not of the

same height. Panel (B) is the fully normalized posterior probability for the frequency of

a stationary sinusoid given these data, note that all of the peaks except the one at the

true frequency, 10 Hz, have been exponentially suppressed.

directly related to how strongly the data indicate the presence of a resonance at

that frequency. To see how multiple peaks might occur, suppose we have the data

shown in Fig. 1(A); with 4 additional nonuniformly but simultaneously sampled

complex data values at 0.001, 0.015, 0.025, and 0.037 seconds respectively.5 These

4 complex data values were generated by sampling the same signal plus noise as

shown in Fig 1(A), but at the four nonuniformly sampled times. Now, according

to the analysis done in this paper, the Nyquist critical frequency for the combined

data is 1=(2 � 0:001 Sec.) = 500 Hz; this bandwidth is exactly the same as the

frequency interval shown in Fig. 2 where we had 10 aliases. In principle, these 4

complex data values should increased the bandwidth by a factor of 10 and should

destroy the aliasing phenomenon in the �500 Hz frequency band. A plot of the

base 10 logarithm of the posterior probability for the frequency of a stationary

sinusoid given the combined data is shown in Fig. 6(A). Note that there are 10

peaks in Fig. 6(A), just as there are 10 peaks in Fig. 2, but the peaks are not of the

same height, so they are not true aliases. To determine which peak corresponds to

the true frequency one must assign a bounded prior probability for the frequency

(to eliminate the true aliases at frequencies above 500 Hz and below -500 Hz) and

then normalize the posterior probability. The fully normalized posterior proba-

5The fact that the 4 complex data values are simultaneously sampled is irrelevant. The results

of this analysis would be the same regardless if these 8 total data items were simultaneously

sampled or not.
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bility for the frequency of a stationary sinusoid is shown in Fig. 6(B). The fully

normalized posterior probability density function has a single peak at 10 Hz, the

true frequency. In this example, the 4 extra nonuniformly sampled complex data

values were enough to rises the probability for the true frequency several orders

of magnitude, and when the posterior probability for the frequency was normal-

ized, the vast majority of the weight in the posterior distribution was concentrated

around the true frequency, consequently all of the spurious peaks seen in Fig. 6(A)

were exponentially suppressed.

In preparing this example the number of nonuniformly sampled data values

had to be chosen. Initially 6 complex nonuniformly sampled data values were

generated. But this was abandon because, when the base 10 logarithm of the

posterior probability for a stationary frequency was plotted, the spurious peaks

were only about 5 percent of the main peak and so did not illustrate the points we

wanted to make. However, it does indicate that it does not take many nonuniformly

sampled data values to eliminate these spurious peaks. As few as 10 percent should

completely eliminate them. Nonetheless, it is possible for the fully normalized

posterior probability for the frequency to have multiple peaks in data that contain

only a single frequency. If this happens, it indicates that the data simply cannot

distinguish which of the possibilities are the true frequency. The only recourse will

be to obtain more measurements, preferably at nonuniformly nonsimultaneously

sampled times.

The preceding example reiterate what has been said several times: the discrete

Fourier transform power spectrum, the Schuster periodogram, a weighted power

spectrum, the Lomb-Scargle periodogram, and the generalizations to these pre-

sented in this paper are suÆcient statistics for frequency estimation given a single

frequency model. Multiple peaks in the discrete Fourier transform and its gener-

alizations are not necessarily evidence for multiple frequencies. The only way to

be certain that multiple frequencies are present is to postulate models containing

one, two, etc. frequencies and to then compute the posterior probability for these

models. Depending on the outcome of that calculation, one can then estimate the

frequencies from the appropriate model.

6. Parameter Estimates

So far the discussions have concentrated on the discrete Fourier transform, how

probability theory generalizes it to nonuniformly nonsimultaneously sampled data,

and how these generalizations a�ect aliases. Now we are going to discuss the e�ect

of nonuniform nonsimultaneous sampling on the parameter estimates. In this dis-

cussion we are going to estimate the parameters using the data shown in Fig. 1(A)

and in Fig. 3(A). These two data sets contain exactly the same signal and each

data set contains Gaussian white noise drawn from a Gaussian random number

generator of unit standard deviation. However, the noise realizations in each data

set are di�erent, and this will result in slightly di�erent parameter estimates for

each data set. Nonetheless these two data sets provide an excellent opportunity

to demonstrate how nonuniform nonsimultaneous sampling a�ects the parameter

estimates.
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Figure 7. Estimating The Parameters
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Fig. 6. The posterior probability of the parameter of interest was computed given the

nonuniformly nonsimultaneously sampled data, solid lines, and was computed given the

uniformly sampled data, open characters. Panel (A) is the posterior probability for the

frequency, (B) the posterior probability of the decay rate constant, (D) the posterior

probability for the amplitude. Panel (C) is the absolute-value spectrum computed for the

uniformly sampled data and for the nonuniformly nonsimultaneously sampled data. The

extra curve in panel (D), the plus signs, is the posterior probability for the amplitude

computed from a nonuniformly nonsimultaneously sample data set having exactly the

same signal with exactly the same signal-to-noise level but with times that were generated

from a uniform random number generator.

We will discuss estimation of the frequency, decay rate constant and the am-

plitude. We will not discuss estimation of the phase and standard deviation of the

noise as these are of less importance. The posterior probability for the frequency,

decay rate constant, and amplitude are shown in panels (A), (B) and (D) of Fig. 7

respectively. Each of these plots is the fully normalized marginal posterior prob-

ability for the parameter of interest independent of all of the other parameters

appearing in the model. Panel (C) contains the absolute-value spectra computed

from these two data sets and will be used to compare Fourier transform estimation
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procedures to the Bayesian calculations. The solid lines in these plots were com-

puted from the nonuniformly nonsimultaneously sampled data shown in Fig. 3(A);

while the curves drawn with open characters were computed using the uniformly

sampled data shown in Fig. 1(A).

A Markov chain Monte Carlo simulation was used to compute the marginal

posterior probability for each parameter. All of the parameters appearing in the

model were simulated simultaneously, thus the Markov chain Monte Carlo simu-

lation simulated the joint posterior probability for all the parameters. This was

done for computational convenience; i.e., it was easier to do a single Markov chain

Monte Carlo simulation than to do �ve separate calculations, one for each param-

eter appearing in the model. Because the probability density functions shown in

panels (A), (B) and (D) were formed by computing a histogram of the Markov

chain Monte Carlo samples there are small irrelevant artifacts in these plots that

are related to the number of samples drawn from the simulation. For more on

Markov chain Monte Carlo methods and how these can be used to implement

Bayesian calculations see Gilks [18] and Radford [19].

The marginal posterior probability for the frequency is shown in panel (A). This

is the fully normalized marginal posterior probability for the frequency indepen-

dent of all of the other parameters, Eq. (38). Note that the true frequency, 10 Hz,

is well covered by the posterior probability computed from both the uniformly

(open characters) and nonuniformly nonsimultaneously (sold line) sampled data.

Also note that these distributions are almost identical in height and width. Conse-

quently, both the uniform and nonuniformly nonsimultaneously sampled data have

given the same parameter estimates to within the uncertainty in these estimates.

Of course the details for each estimated di�er, because the noise realizations in each

data set di�er. Consequently, the frequency estimate is not strongly dependent on

the sampling scheme. Indeed this can be derived from the rules of probability the-

ory with the following proviso: the two sampling schemes must cover the same

total sampling time and must sample the signal in a reasonably dense fashion so

that sums may be approximated by integrals, [11,16]. Having said this, we must

reemphasize that this is only true for frequency estimates using data having sam-

pling schemes covering the same total sampling time; it is not true if the sampling

times di�er nor is it necessarily true of the other parameters appearing in the

model. Indeed one can show that for a given number of data values, the precision

of the frequency estimate for a stationary sinusoid is inversely proportional to the

total sampling time, provided one samples the signal in a reasonably dense fash-

ion. Thus, sampling 10 times longer will result in frequency estimates that are 10

times more precise. As noted in Bretthorst [11] this is equivalent to saying that

for frequency estimation data values at the front and back of the data are most

important in determining the frequency, because it is in these data that small

phase di�erences are most highly magni�ed by the time variable. This could be

very useful in some applications; but of course it will not help in NMR applications

where the signal decays away.

In addition to the posterior probability for the frequency, we have also plotted

the absolute-value spectra computed from these two data sets, Fig. 7(C). Note

that the peaks of these two absolute-value spectra are at essentially the same



\Nonuniform Sampling: Bandwidth and Aliasing" 25

frequency as the corresponding peaks in panel (A); although they are plotted on

di�ering scales. If the absolute value spectrum is used to estimate the frequency,

one would typically use the peak frequency as the estimate, and then claim roughly

the half-width-at-half-height as the uncertainty in this estimate. For these two

data sets that is about 10 plus or minus 2 Hz. The two fully normalized posterior

probabilities shown in panel (A) span a frequency interval of only 0.2 Hz. This

frequency interval is roughly 6 standard deviations. Thus the frequency has been

estimated to roughly 10 Hz with an uncertainty of 0:2=6 � 0:03 Hz; a 60 fold

reduction in the uncertainty in the frequency estimate.

One last note before we begin the discussion of estimating the decay rate

constant, we reiterate that all of the details in the wings of the absolute-value

spectrum shown in panel (C) are irrelevant to the frequency estimation process.

The posterior probability for the frequency has peaked in a region that is very small

compared to the scale of these wings, all of the information about the frequency

estimate is contained in a very small region around the largest peak in the absolute-

value spectrum.

The marginal posterior probability for the decay rate constant is shown in

Fig. 7(B). Here we again �nd that the parameter estimates from both data sets are

essentially identical in all of there relevant details. Both probabilities peak at nearly

the same value of the decay rate constant, both have nearly the same width, and

therefore the same standard deviation; thus like frequency estimates, the estimates

for the decay rate constants do not strongly dependent on the sampling scheme.

In principle the accuracy of the estimates for the decay rate constants scale with

time just like the frequency estimates, of course, with decaying signals this is of

little practical importance. Note that the decay rate constant has been estimated

to be about 3:2� 0:3 Sec.�1 at one standard deviation. The true value is 3 Sec.�1,

so both sampling schemes give reasonable estimates of the decay rate. If one were

to try and estimate the decay rate constant from the absolute-values spectrum,

the half-width-at-half-height would normally be used, here that is about 2 Sec.�1

and no claim about the accuracy of the estimate would be made.

The marginal posterior probability for the amplitude of the sinusoid is shown

in Fig. 7(D). The amplitude, A, was de�ned in Eq. (17). In this paper we did

not directly talk about amplitude estimation (see Bretthorst [16] for a discussion

of this subject), rather we treated the amplitudes of the sine and cosine model

functions as nuisance parameters and removed them from the posterior proba-

bility for the other parameters. We did this because we wished to explore the

relationships between frequency estimation using Bayesian probability theory and

the discrete Fourier transform. However, the Markov chain Monte Carlo simu-

lation used A cos(2�ft + �) expf��tg as the model for the real data, so it was

a trivial matter to compute the posterior probability for the amplitude. If you

examine Fig. 7(D) you will note that now we do have a di�erence between the

uniform (open characters) and the nonuniformly nonsimultaneously sampled data

(solid lines). The amplitude estimates from the nonuniformly nonsimultaneously

sampled data are a good factor of 2 more precise than the estimates from the

uniformly sampled data. One might think that this is caused by the nonuniform

nonsimultaneous sampling and this would be correct, but not for the obvious rea-
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sons. If you examine panel (D) you will note that we have plotted a third curve

(plus signs). This curve is the posterior probability for the amplitude computed

from data with the exact same signal and signal-to-noise ratio, but having times

that are nonuniformly nonsimultaneously sampled where the times were generated

from a uniform random number generator. We will call this data set the uniform-

randomly sampled data. Note that the height and width of the posterior probabil-

ities computed from both the uniformly and the uniform-randomly sampled data

are essentially the same, so by itself the nonuniform nonsimultaneous sampling did

not cause the amplitude estimates to improve. The amplitude estimate improved

because exponential sampling gathered more data where the signal was large. The

accuracy of the amplitude estimate is proportional to the standard deviation of

the noise and inversely proportional to square root of the e�ective number of data

values. Because exponential sampling gathered more data where the signal was

large, its e�ective number of data values was larger and so the amplitude estimate

improved. In this case, the improvement was about a factor of 2, so the exponen-

tial sampling had an e�ective number of data values that was about a factor of 4

larger than for the uniformly or uniform-randomly sampled data. This fact is also

re
ected in di�ering heights of the absolute value spectra plotted in Fig. 7(C). The

peak height of an absolute value spectrum is proportional to the square root of

the e�ective number of data values. In panel (C) the spectra computed from the

uniformly sampled data set, open characters, is roughly a factor of 2 lower than

the height of the spectrum computed from the exponentially sampled data set,

solid line.

7. Summary and Conclusions

Probability theory generalizes the discrete Fourier transform roughly as follows:

in uniformly simultaneously sampled complex data, the suÆcient statistic for es-

timating the frequency of a single stationary sinusoid is the power spectrum or

Schuster periodogram. When the signal is exponentially decaying, the appropri-

ate generalization is a exponentially weighted normalized power spectrum. The

normalization constant is an e�ective number of data values. When the data are

nonuniformly simultaneously sampled the suÆcient statistic remains unchanged

except the times must be explicitly used in the calculation of the periodogram.

Finally, when the data are nonuniformly nonsimultaneously sampled, the sine and

cosine transforms making up the discrete Fourier transform must properly ac-

count for the di�ering acquisition times in each channel, thus each sine and cosine

transform must have its own summation index. The suÆcient statistic must also

take into account the di�ering numbers of data in each channel as well as the

nonorthogonality of the nonsimultaneously sampled sinusoidal model functions.

In a literal sense, probability theory does no such thing as generalize the discrete

Fourier transform. Probability theory simply tells one how to analyze a particular

problem optimally. For estimation of a harmonic frequency, the suÆcient statistics

turn out to be related to the discrete Fourier transform. This was, for us, a happy

coincidence because it enabled us to interpret the results of the analysis in a way

that sheds light on the discrete Fourier transform and how it should be used. In the
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appropriate limits, the discrete Fourier transform power spectrum, the Schuster

periodogram, the Lomb-Scargle periodogram and the generalizations presented

in this paper are all optimal frequency estimators for the single sinusoidal case.

However, when the true signal deviate from this model, for example when there

are multiple sinusoids or the data contain a constant o�set, then these statistics

are never optimal frequency estimators, and there are always other statistics that

will improve the resolution of the multiple frequencies or properly account for a

constant o�set in the data, see [11,7{9].

Aliasing is a general phenomenon and exists in both uniformly and nonuni-

formly nonsimultaneously sampled data for exactly the same reason. It is the fact

that all of the times may be expressed as an integer multiple of an e�ective dwell

time that is the primary cause of aliasing. Two data sets di�ering only in how pre-

cisely the times are recorded generally have di�erent Nyquist critical frequencies.

The analysis in this paper generalized the concept of bandwidth and showed

that uniformly simultaneously sampled data have the smallest possible band-

width. The addition of any nonuniformly nonsimultaneously sampled data al-

ways increases the Nyquist critical frequency and thus increases the bandwidth.

The Nyquist critical frequency for nonuniformly nonsimultaneously sampled data

may be many orders of magnitude greater than that for uniformly simultaneously

sampled data having similar acquisition parameters. Consequently, nonuniformly

nonsimultaneously sampled data can have tremendous advantages over uniformly

sampled data because the critical time is not how fast one can sample data, but

how accurately one can vary the acquisition of each data item. This opens up the

possibility of measuring very high frequencies with bandwidths much larger than

previously possible.
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A. The Lomb-Scargle Periodogram

The Lomb-Scargle periodogram can be derived as the suÆcient statistic for fre-

quency estimation using Bayesian probability theory. As in all such estimation

problems, the data must be related to the parameter of interest through a model.

The model used by Lomb [1] is

d(ti) = A cos(2�fti � �) +B sin(2�fti � �) (46)

with � chosen as a frequency dependent phase shift that makes the sine and cosine

model functions orthogonal on the discretely sampled time points; namely

� =
1

2
tan�1

�
U

V

�
(47)
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with

U �
NX
i=1

sin(4�fti) and V �
NX
i=1

cos(4�fti): (48)

Using the Lomb model, Eq. (46), if we now apply the rules of probability the-

ory to compute the posterior probability for the frequency, f , independent of the

amplitudes and variance of the noise, one obtains

P (f jDI) / 1p
CS

h
Nd2 � h2

i 2�N
2

(49)

where d2 is the mean-square data value. The suÆcient statistic, h2, is given by

h2 =
RLS(f)

2

C
+
ILS(f)

2

S
(50)

and

RLS(f) �
NX
i=1

d(ti) cos(2�fti � �);

ILS(f) �
NX
i=1

d(ti) sin(2�fti � �);

C �
NX
i=1

cos2(2�fti � �);

S �
NX
i=1

sin2(2�fti � �):

(51)

In deriving this result, uniform prior probabilities were use for A and B and a

Je�reys' prior was used for the standard deviation of the noise. Written in this

form the suÆcient statistic, Eq. (50), is an exact analogue to a normalized power

spectrum of the data, and so brings out the relationship to a discrete Fourier

transform in a very elegant way.

The Lomb model, Eq. (46), may be transformed into the stationary sinusoidal

model used in this paper by the following change of variables

A0 = A cos � �B sin �

B0 = B cos � +A sin �
(52)

and the Lomb model becomes

d(ti) = A0 cos(2�fti) +B0 sin(2�fti) (53)

where the amplitudes, A0 and B0, are the amplitudes use in the formulation of the

problem given in this paper. This simple change of variables cannot change the

resulting suÆcient statistics; because the total projection of the model onto the
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data remains the same. Consequently, Eq. 37, and Eq. (50) give identical frequency

estimates (after account for di�ering sign conventions). However, use of the Lomb

model to estimate the sine and cosine amplitudes of the sinusoid will result in

estimates that are shifted from the true values because of the phase �. If the Lomb

model were rewritten to include the amplitude of the sinusoid,
p
A2 +B2, and this

model used to estimate the amplitude, this transformed model would estimate the

amplitude of the sinusoid correctly even though it does not estimate the sine and

cosine amplitudes correctly.

Last, the Lomb-Scargle periodogram is usually normalized by an estimate of the

standard deviation of the noise. For example, in Numerical Recipes [14] it is divided

by essentially 2 times the mean-square data value. However, this cannot possibly

be a very sensible normalization if for no other reason than as the noise goes to

zero the accuracy of the frequency estimate remains �nite; while the posterior

probability, Eq. (49), goes into a delta function. As explained in Bretthorst [11],

around the maximum of the posterior probability, the posterior probability is well

approximated by

P (f jDI) � exp

(
h2

2h�2i

)
(54)

where h�2i, the expected variance of the noise, is given by

h�2i = 1

N � 4

h
Nd2 � h2

i
(55)

and this is essentially the mean-square residual as a function of frequency. As the

noise goes to zero, the expected variance of the noise goes to zero, and so, this

normalization of the periodogram goes into a delta function, as it should. Con-

sequently, the Lomb-Scargle periodogram, at lease as implemented in Numerical

Recipes, will missestimate the uncertainty in the parameter estimates and this

error could be quite large depending on the signal-to-noise ratio of the data.
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