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Abstract
Since their initial description, phased array coils have become increasingly popular due to their ease
of customization for various applications. Numerous methods for combining data from individual
channels have been proposed that attempt to optimize the SNR of the resultant images. One issue
that has received comparatively little attention is how to apply these combination techniques to a
series of images obtained from phased array coils that are then analyzed to produce quantitative
estimates of tissue parameters. Herein, instead of the typical goal of maximizing the SNR in a single
image, we are interested in maximizing the accuracy and precision of parameter estimates that are
obtained from a series of such images. Our results demonstrate that a joint Bayesian analysis offers
a “worry free” method for obtaining optimal parameter estimates from data generated by multiple
coils (channels) from a single object (source). We also compare the properties of common channel
combination techniques under different conditions to the results obtained from the joint Bayesian
analysis. If the noise variance is constant for all channels, a sensitivity weighted average provides
parameter estimates equivalent to the joint analysis. If both the noise variance and signal intensity
are similar in all channels, a simple channel average gives an adequate result. However, if the noise
variance differs between channels, an “ideal weighted” approach should be applied, where data are
combined after weighting by the channel amplitude divided by the noise variance. Only this “ideal
weighting” provides results similar to the automatic-weighting inherent in the joint Bayesian
approach.

Introduction
Since their early description (1), phased array coils have become increasingly widespread due
to their ease of customization for various applications. Their recent surge in popularity can be
traced to improvements in coil technologies and the development of rapid imaging techniques
that utilize the spatial information from the phased array coils to decrease acquisition times
(2,3). However, these coils are also used in more traditional imaging experiments simply for
their flexibility and increased signal-to-noise ratio (SNR).

Numerous investigators (1,4-9) have attempted to optimize the SNR of images from phased
array coils and proposed various techniques for combining such data. Roemer (1,5) and others
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(6,7,9) have suggested that the sum-of-squares (SOS) combination provides a near optimal
signal-to-noise ratio in the reconstructed image, approaching that of a reconstruction using the
“correct” channel sensitivity profile without requiring additional acquisitions. Others have
refined this technique by weighting the channels using more complex factors that reduce the
impact of local signal and noise fluctuations and more accurately characterize the true coil
response profiles (6,8,10-12). These weighting factors are commonly obtained from either a
smoothed version of the data itself or a separately acquired lower-resolution image.

One issue that has received relatively little attention is how the different channel combination
techniques affect parameter estimates obtained from modeling the signal in a series of images
(11,13). Here, we are interested in maximizing the accuracy and precision of parameter
estimates that are obtained from a series of array coil images. In addition to SNR optimization,
this imposes the additional constraint of accurately preserving the relationships between the
series images.

We also explore the effects of various channel combination methods on the accuracy and
precision of parameter estimates and examine the case where the common assumption of equal
noise power across channels is violated. In the simplest method for combining channels, the
channel average or sum, all channels are treated equally. When signals of differing SNR are
averaged, information from the high SNR channels are diluted by the lower SNR channels,
resulting in less accurate and less precise parameter estimates (14). Such variations in signal
and noise power across channels are common in real imaging experiments as the array elements
are seldom equidistant from a particular region of interest. If there are systematic effects in the
data that are not properly modeled (e.g. the Rican noise profile induced by processing the
magnitude images from each channel), they can coherently combine and further distort the
parameter estimates. Channels may also experience different loading due to their placement
on different parts of the sample or patient, and will have some degree of coupling. Thus, the
simple averaging of channels is rarely advisable.

Sensitivity-weighted averaging attempts to mitigate these effects by accounting for spatial
variations in signal intensity for each channel. However, these methods do not account for
variations in noise power between channels and can still magnify systematic effects and
artifacts in the data. If the channel weighting factors for each image in a series is derived from
its own intensity, these weighting factors will differ across the series images, potentially biasing
the parameter estimates. An extreme case of this occurs with the sum-of-squares (SOS)
combination of images. While reported to provide a “near-optimal” SNR, the SOS combination
also artificially distorts the relationships between images in a series by forcing all low SNR
points to take positive values, introducing a DC offset that coherently combines across
channels. For an exponential decay model, this increased noise floor produces a systematic
underestimation of the decay rate constant and will affect the accuracy and precision of rate
constant estimation, as previously described (6,15-20).

As an alternative to determining the optimal channel weighting factors for a given experimental
setup, we could also analyze multi-channel data without signal combination. The signals from
the various channels can be jointly analyzed with a model that allows the channel-specific
properties (such as signal amplitude and noise power) to vary across channels while requiring
the MRI properties inherent to the imaged object (such as a decay rate constant) to be identical
for all channels. We have implemented this framework using Bayesian probability theory and
demonstrate its benefits for modeling simulated multi-channel data compared to more
traditional combination techniques. For simplicity, we consider here only the mono-
exponential decay model prevalent in MR, but these general principles have an obvious
extension to more complex estimation problems. We conclude that a joint Bayesian analysis
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offers a “worry free” method for obtaining optimal parameter estimates from multi-channel
data.

Theory
A ubiquitous model in MRI experiments is the mono-exponential decay. For simplicity of the
analysis below, we assume a simple mono-exponential analysis without a constant, such as in
T2 or diffusion measurements. For an array of M-channels used to acquire decay measurements
at N different times, the measured signal can be expressed as:

[1]

where Sm(tn) is the signal measured on the mth channel at the nth sampling time (or b-value in
the case of the diffusion experiment), ηm (tn) is the noise in the mth channel at the nth sampling
time tn, Am is the signal amplitude in channel m, and R is a rate constant (e.g. R2 or ADC).
While we assume for simplicity that the channels are sampled simultaneously, which is
typically the case, and that there is no coupling between coils, no other assumptions are made
as to the distribution of data samples in time. The rate constant is treated as an inherent property
of the sample, and is therefore independent of which channel is performing the measurement,
whereas the signal amplitude and the noise are properties of each channel.

NMR/MRI scanners typically produce a complex signal (quadrature detection), and the real
and imaginary components are commonly combined to produce a magnitude signal or image.
For our purposes, the complex signal from each channel is assumed to have been “phased”,
i.e. the coherent signal moved entirely to the real channel, and only the real signals are analyzed
(21,22). This produces an improvement in SNR and removes the bias introduced by using
magnitude images. An alternative would be the simultaneous analysis of the real and imaginary
components from all channels. However, as this would complicate the model by introducing
an additional amplitude (or phase) for each channel, we will assume for simplicity that the data
have already been phased.

In Bayesian analysis, we are interested in calculating p (AR|DσI), the joint posterior probability
of the model parameters A and R given the data, D, the standard deviation of the noise prior
probability, σ, and the prior information, I. Using Bayes' theorem and the product rule, omitting
constant terms that will cancel upon normalization, and assuming independence in our prior
knowledge of A, R, and this can be expressed as

[2]

In this equation, p (A|I) and p (R|I) are the prior probabilities of the parameters A and R, and
represent what is known about the possible values of these parameters before acquiring the
data; p (D|ARσI) is the direct probability of the data given the parameters and is proportional
to a likelihood function.

Initially, we consider the signal generated by a single channel and calculate the expected
uncertainty in the resultant parameter estimates. Using uniform and comparatively non-
informative priors, the joint posterior probability of the model parameters in Eq. [2] can be
expressed as (14,23,24)
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[3]

In the majority of exponential decay experiments, the actual value of the amplitude parameter
is of little interest and we are primarily concerned with estimation of the rate constants. In such
cases, the amplitudes can be removed from the analysis by calculating the marginal probability
for the decay rate constant, R. This requires integrating Eq. [3] over all possible values of A:

[4]

Assuming high SNR, that the data are sampled at uniformly spaced times, and that the data are
acquired until the exponential decays into the noise, the uncertainty in the decay rate constant
estimate for a single channel was previously estimated as the standard deviation of the posterior

probability distribution for parameter R,  where Δt is the sampling interval
between data points and Rˆ is the true value of the rate constant (25).

To broaden the applicability of this result to imaging experiments, here we relax the
assumptions of uniform sampling and acquiring data until the signal decays into the noise. In
the next section, we will also expand this result to the multi-channel case. To analytically
evaluate Q in Eq. [4], the data are expressed in terms of Aˆ, Rˆ, and ηˆ(tn), the true values of
the amplitude, rate constant, and noise:

[5]

In the high SNR approximation, which allows us to neglect the noise term from Eq. [5],
evaluation of the amplitude integral in Eq. [4] and omitting constant terms produces the
marginal probability for the rate constant in the form:

[6]

where d is a vector of data values acquired at the N sampling times and the elements of the
model vector, G = {Gn}, are defined as Gn = exp(−R tn).

Note that the specific time dependence of the signal determines only the form of the vectors
d and G. The basic structure of Eq. [6] will occur with any signal model containing a single
marginalized amplitude, not just for the mono-exponential model considered here.

In the high SNR regime, the marginal probability for the decay rate constant R in Eq. [6] has
a maximum at R = Rˆ. Using a second-order Taylor series expansion about Rˆ, we obtain:
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[7]

where

[8]

Here σR is the standard deviation of the posterior probability distribution for parameter R,
effectively representing the predicted uncertainty in the parameter estimate, and SNR = Aˆ /
σ is the signal-to-noise ratio for the un-attenuated signal (t = 0).

As expressed in Eqs. [7] and [8], estimation of the decay rate constant and calculation of the
uncertainty in its estimation, σR, require explicit knowledge of the noise standard deviation for
each channel. This dependence can be removed by integrating over all possible values of the
noise standard deviation, analogous to what was done with the signal amplitude above. While
this approach is generally useful, if the number of sampling times is small then the data contains
only minimal information about the standard deviation of the noise and this extra degree of
freedom in the calculation would produce a significantly greater uncertainty in the estimate of
the rate constant compared to when the noise standard deviation is explicitly included. For
simplicity, we will utilize only two sampling times in the simulations below and therefore will
assume that the noise standard deviation is accurately known for each channel and insert these
values into Eqs. [7] and [8]. Analysis of simulated data after marginalization of the noise
standard deviation produced larger but qualitatively similar parameter uncertainties (data not
shown).

Joint analysis
The uncertainty in the decay rate constant from the joint analysis of data simultaneously
measured from M independent channels can be similarly derived. Starting from Eq. [2], we
now allow A, σ, and D to symbolize the set of amplitudes, noise standard deviations, and data
for all channels, A = {Am}, D = {Dm}, and σ = {σm}. Assuming that the amplitude and noise
from the different channels are effectively independent, i.e. the noise is uncorrelated between
channels, each term in Eq. [2] can be expanded as the product of the probabilities for the
individual channels. If we again use uniform and comparatively non-informative priors, this
produces:

[9]

analogous to Eq. [3]. The marginal posterior probability for R is obtained by integrating the
joint posterior probability in Eq. [9] over all of the amplitudes, A, producing:
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[10]

To obtain an analytic expression for the rate constant uncertainty, we again utilize a Taylor
series expansion about the rate constant, producing:

[11]

where:

[12]

Here, the function F(Rˆ, t) is still defined by Eq. [8] and  is the effective signal-to-noise
ratio for the jointly analyzed data, given by:

[13]

When the noise level is identical for all the channels, σm = σ, the effective SNR reduces to

[14]

Further, if the signals in all channels are characterized by the same SNR, then

 and Eq. [12] reduces to

[15]

i.e., when all channels have identical SNR, the uncertainty in the parameter estimate for R
decreases as the square root of the number of channels, as expected.

Weighted Average Analysis
For comparison, we explore an alternative where the signals from different channels are
combined prior to analysis. The most general method is to “weight” the signal from each
channel by a channel-specific factor, λm, and generate the average weighted signal,
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[16]

For an un-weighted average, λm = 1; for sensitivity weighting, λm = Aˆm, which is approximated
here for each channel by its signal in the un-weighted (t = 0) image. The noise standard deviation
in each channel is also weighted by the same factor: σm → λmσm. If the noise is uncorrelated
across channels, then the effective noise in the combined data is equal to

 Here, we assume that for each channel all N images in the series
are weighted using the same channel-specific factor.

With joint analysis, “weighting” the channels does not alter the effective SNR in Eq. [13] as
the scaling factors for the amplitude and noise standard deviation cancel. However, if the
signals are averaged after scaling, as in Eq. [16], then the uncertainty in Eq. [12] becomes

[17]

where the effective SNR, is:

[18]

To compare the effective SNR from the joint analysis, Eq. [13], to the effective SNR from
weighted averaging, Eq. [18], it is convenient to introduce the variables xm = Aˆm / σm and
ym = λmσm, allowing us to rewrite the ratio of the two effective SNRs as:

[19]

According to the Cauchy inequality, the ratio in the right-hand side of Eq. [19] is always less

than or equal to 1. Therefore,  from weighted averaging cannot exceed  from
the joint analysis:

[20]

The SNRs in Eq. [20] coincide if and only if ym = γxm for all m, where γ is an arbitrary positive
coefficient. Thus, when combining channels using weighted averaging, the maximum
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 and, therefore the best estimate of the parameter Rˆ, can be achieved using the
weighting factors:

[21]

The coefficient is a common scaling factor which cancels from the expression for  and
can therefore be set equal to 1. It is easy to verify that  in Eq. [18] with λm from Eq.

[21] exactly coincides with  in Eq. [13] obtained by the joint analysis. Hence, Eq. [21]
provides an optimal weighting algorithm.

It should be noted, however, that obtaining a pixel-wise estimate of the signal amplitude and
noise levels for each channel is not always practical, especially for low SNR cases, and any
errors in these estimates would propagate into bias and/or increased uncertainties in the
parameter estimation. The commonly used sensitivity weighting, λm=Aˆm, provides the optimal
weighting, with effective SNR equivalent to the joint analysis, if and only if the noise standard
deviation is the same in all the channels, σm= σ. The effective SNR using the un-weighted
average, λm = 1, is always lower than the effective SNR from the joint analysis, except for the
trivial case when the signal amplitudes and noise levels on each channel are identical.

Sum-of-Squares
The most commonly utilized technique for processing multi-channel data (and the default
option on many MRI scanners), involves combining the magnitude data from each channel by
calculating the square root of the sum-of-squares (SOS):

[22]

where  is the magnitude of the complex data.

It is important to note the significant differences between SOS and the other combination
techniques outlined above. In the SOS analysis, the channel weighting factors vary for each
image in a series, potentially distorting the decay behavior. If we consider the SOS as a special
case of the weighted average, then each data point is effectively used as its own weighting
factor (sensitivity map). Since the SNR of the images decreases as tn increases, the sensitivity
map estimate is necessarily of lower quality at later time points. Thus, we would expect
parameter estimates from this method to be less accurate than those from weighting the images
by a constant sensitivity map derived from the highest SNR image (or a high SNR reference
image). As the sum-of-squares forces all data values to be positive, it also introduces a well-
known DC offset that can significantly distort the decay behavior and introduce a substantial,
sampling time-dependent bias in the estimate of the rate constant. Although not commonly
performed, the sum-of-squares across channels can also be calculated using only the real
images from each channel, after phasing. We do so here, in order to maintain a fair comparison
between combination methods, with the understanding that the additional use of magnitude
data would be expected to worsen the accuracy of the parameter estimates.
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At present, the above theoretical analysis of the parameter uncertainty cannot be directly
applied to SOS data as the channel weighting factors, and therefore the noise power, change
for each time point. Incorporation of these effects would require a substantial expansion of the
above theory and the mathematical form of these expressions would be significantly less
tractable. However, we can still examine the accuracy of the parameter estimates produced by
the analysis of SOS data as the value of the standard deviation of the noise prior probability,
σ, does not affect the location of the maximum in Eq. [4], though the actual noise values do.

While the bias inherent in obtaining parameter estimates from magnitude data in a single
channel system is widely known, few have considered the impact of the SOS combination of
array images on parameter estimation (11). Below, we analyze simulated data to compare the
bias in the decay rate constant obtained by the SOS approach with the alternate approaches
developed in the current manuscript.

Computer Simulations
The theoretical equations derived above provide a lower-bound estimate of the expected
parameter uncertainties for experiments using arbitrary signal combination techniques.
However, due to its approximations, this theory may lose accuracy with low SNR data. To
validate the theory and establish its accuracy, we analyzed computer simulated data and
compare the uncertainties in the parameter estimation to the theoretically predicted values.
This approach also measures the bias of the resulting parameter estimates at various SNR levels.

Simulated data were generated and analyzed using MATLAB (R2007b, Mathworks, Natick,
MA) on a Windows XP workstation. For every parameter combination below, 160,000
synthetic one- or two-channel datasets were generated using Eq. [1] at two measurement times
(t0 = 0, t1 = 1s) and a decay rate constant (R0 = 1s-1). Independent Gaussian noise was added
to each channel to the desired SNR.

One Channel Simulations
For each dataset in the one channel simulations, we determined the marginal probability
distribution for the decay rate constant Rˆ using Eq. [6] and the maximum and standard
deviation of each distribution was selected as the parameter estimate and its uncertainty. The
median of these values across simulations was calculated, to minimize the effect of outlying
datasets, and compared to the theoretically predicted uncertainty from Eq. [8]. Data for this
analysis were generated with SNR values of 50, 40, 30, 25, 20, 15, 10, and 5:1.

Fig. 1 compares σR, the percent uncertainty in the rate constant estimate for a one channel
dataset predicted from Eq. [8] (solid line) and the median percent standard deviation (%SD)
of Rˆ from the Bayesian analysis (symbols), as functions of SNR. For one channel data at
sufficiently high SNR (SNR ≥ 15), the theoretical values of the rate constant uncertainty, σR,
are in excellent agreement with the % SD obtained from simulated data, whereas significant
deviations appear at low SNR.

Two Channel Simulations
The computer simulations for a two-channel system were performed as follows. The first
channel always had SNR of 25 and the second channel had SNR values of 25, 20, 15, 10, or
5:1. Every SNR value less than 25 was repeated twice; first by reducing the signal amplitude
on the second channel and second by increasing the noise standard deviation, thereby producing
a total of nine SNR combinations. Each simulated two-channel dataset was analyzed jointly
and after channel combination using each of the following techniques: (i) average intensity -
Eq. [16] with λm = 1, (ii) sensitivity weighted average - Eq. [16] with λm =Aˆm, (iii) an “optimally
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weighted” average with  and (iv) square root of the sum of squares. For each dataset,
the marginal probability distribution for the rate constant Rˆ for the averaged and joint analyses
was determined using Eq. [6] or Eq. [10], and the maximum and standard deviation of each
distribution was selected as the parameter estimate and its uncertainty. For the SOS analysis,
the parameter estimates were also determined using Eq. [6], however the parameter uncertainty
was not calculated due to the ambiguity in the value of the noise standard deviation, as described
above. The maximum of the probability distributions was calculated with a resolution of 0.0025
sec-1.

The theoretically expected percent uncertainties in the decay rate constant estimates, σR, are
shown in Fig. 2 for each combination method as functions of SNR2, the SNR in the second
channel. For comparison, the expected percent uncertainty in the decay rate constant estimates
from analyzing the high SNR channel alone (denoted below as σR,1Ch) is also shown (horizontal
line in Fig. 2). The symbols of each color represent the median percent uncertainty in the rate
constant, over all 160,000 simulated datasets using that combination technique. The estimates
of the rate constant uncertainty obtained by “optimal weighting” for both constant noise power
and constant signal amplitude exactly coincide with the uncertainty obtained by the joint
analysis, as does the uncertainty from “sensitivity map” averaging when SNR2 is decreased by
reducing signal amplitude. The uncertainty obtained by “sensitivity map” weighting when the
noise standard deviation is increased in the second channel exactly coincides with the
uncertainty from the un-weighted average under the same conditions. For clarity, these
overlapping results are not separately displayed in Fig. 2. There is an excellent agreement
between the theoretical predictions for the rate constant uncertainty, σR, and the values obtained
from simulated data for all the combination methods over the range of SNR studied.

When both the signal amplitude and noise standard deviation in the two channels are the same
(A1 = A2, σ1 = σ2, Fig. 2 right side), the average, joint, and sensitivity weighted average analyses
all produce equivalent uncertainties, equal to the  as expected, where σR,1Ch is the
uncertainty from analyzing the high SNR channel alone As SNR2 is reduced, σR produced by
the joint analysis increases smoothly towards, but remains lower than σR,1Ch. In contrast, σR
obtained from the average analysis can become higher than the one channel result as SNR2
decreases.

It is important to note that σR obtained by the average analysis (weighted and un-weighted)
depends both upon the SNR of the second channel, SNR2, and the whether the signal amplitude,
A2, or the noise standard deviation, σ2 differs from the first channel. If the two channels have
identical noise powers, as the SNR decreases by decreasing the amplitude in the second
channel, σR from the sensitivity weighted average mimics the joint analysis and increases
towards the single channel result, whereas the un-weighted average increases towards

 However, if the two channels have identical amplitudes, as the SNR decreases by
increasing the noise power in the second channel, the uncertainty in the rate constant estimate
for both the sensitivity-weighted and un-weighted averages rapidly increases and becomes
proportional to the noise power in the second channel, σ2. This is in sharp contrast to the joint
Bayesian analysis, which is independent of the method of changing SNR in the regime
considered here.

This theory was also utilized to generate Figs. 3, which show the expected rate constant
uncertainty relative to the one channel result, σR / σR,1Ch, for an M-channel array where all
channels other than the first have identical, lower SNRs, denoted as SNR2. These results are
plotted as functions of SNR2 / SNR1 for different numbers of channels with the lower SNR.
Figure 3a corresponds to the joint analysis, Fig. 3b to un-weighted averaging of channels with
varying amplitudes and Fig. 3c. to un-weighted averaging of channels with varying noise
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standard deviations. We see that the uncertainty in Rˆ from the joint analysis always improves
with additional channels, even at low SNR. As expected, this uncertainty converges to the one
channel result, σR,1Ch, when the lower SNR channels contain no signal and to  as
the SNR in all channels becomes equal. The uncertainty from the averaged data also converges
to  as the SNR in all channels becomes equal. However, as SNR2 decreases, σR from
averaged data can become larger than the one channel result. If all M channels have identical
noise powers, the uncertainty from the un-weighted average converges to  as the
SNR of the additional channels decreases (Fig. 3b). If all M channels have identical amplitudes,
the uncertainty from un-weighted averaging rapidly increases with decreasing SNR and
becomes proportional to the noise power of the additional channels (Fig. 3c). As with the two
channel case, the sensitivity weighted average would appear identical to Fig. 3a when only the
signal amplitude changes between channels and Fig. 3c when only the noise power changes
between channels. In real experiments where amplitude and noise power changes both
contribute to SNR differences between channels would be expected to have a SNR dependence
that lies between these two extremes.

The bias in estimation of the decay rate constant was calculated as the median bias over all
two-channel simulated datasets. The % bias for the sum-of-squares, and joint analysis is shown
in Fig. 4 as a function of SNR in the second channel. The sum-of-squares (SOS) combination
of channels demonstrates the expected negative bias in the decay rate constant, with a greater
bias when the noise power varies between channels. The joint analysis is effectively unbiased
at all SNR values tested and is independent of whether the amplitude or noise power differs
between channels. The optimally weighted average is also unbiased and the average and
weighted average analyses exhibit a minimal bias only at the lowest SNR values (data not
shown).

Discussion
The theoretical analysis and computer generated experiments above demonstrate that two
approaches, joint analysis and the “optimal” weighted average, give the most accurate and
precise results for parameter estimation from multi-channel data. While the “optimal” weighted
average method requires knowledge of the noise power and amplitude for each pixel in each
channel (information not always readily available), the joint Bayesian analysis “automatically”
takes care of this problem by effectively weighting the contributions from the different channels
based upon the strength of their projection onto the model.

The estimates for parameter accuracy produced in this Bayesian analysis are conservative and
consistent with the information explicitly stated in the model definition. If additional
information is available, e.g. reliable sensitivity profiles for the array channel elements, this
can be incorporated into the joint Bayesian analysis and may improve the quality of the
parameter estimation. However, as these sensitivity profiles can also depend upon RF coil
loading and the acquisition parameters used for sensitivity mapping, caution should be
exercised when incorporating this information into this or other analyses.

Most previous treatments of multi-channel data have assumed that all channels are
independent, but share the same noise power. As the noise in a given channel depends upon
the coil construction, its loading, which may be different for array elements positioned about
different regions of the subject's body, the degree of inter-channel coupling, and whether the
noise is sample- or coil-limited, this assumption may not be valid in a particular experiment.
Systematic effects in the data that are not fully modeled, such as noise correlations between
channels or the Rican noise profile induced by processing the magnitude images from each
channel, can add coherently upon channel combination and significantly distort the resulting
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parameter estimates. The joint Bayesian analysis of channels minimizes these effects, and
provides a rigorous framework for incorporating factors such as inter-channel noise
correlations.

As apparent from Eq. [13], the parameter uncertainty using the joint analysis is independent
of whether the amplitude or the noise power is varying across channels and depends only upon
the resultant signal-to-noise ratio. In contrast, the un-weighted or sensitivity-weighted average
analyses, Eq. [18], are strongly dependent upon how these quantities individually vary.

As expected, the accuracy and precision of the parameter estimates improves with increasing
SNR for all channel combinations. The joint analysis utilizes the additional information
contained in low SNR channels without corrupting the high SNR channels and therefore
produces parameter estimates that are always better than or equal to the one channel result. In
contrast, the accuracy and precision of parameter estimates obtained after channel combination
are sometimes degraded by the inclusion of a lower SNR channel, producing less accurate and
precise results than if the high SNR channel was analyzed alone. This is especially true if the
noise standard deviation varies between the two channels, as most combination techniques
assume this is constant for all channels. The impact of non-optimal channel combination on
the precision of parameter estimates increases with the number of low SNR channels and the
number of sampling times (especially those with lower SNR).

Compensating for the reduced effective SNR of non-optimally combined data requires
additional scanner time or improved hardware. For example, when using an eight channel array,
if one channel has twice the SNR of the other channels for a given pixel or dataset, then a non-
optimal channel combination can reduce the effective SNR by up to 10%, requiring a 14%
increase in imaging time to compensate. If instead we assume that one channel has a four times
greater SNR, the decrease in effective SNR could be as large as 64%, requiring a 167% increase
in im aging time. In contrast, the joint analysis produces the maximum effective SNR with no
additional scanner time and without distorting the signal relationships within a series of images.
While a joint analysis is more computationally intensive than traditional methods, with modern
computers this is less of a limitation.

The significance of these effects will depend upon SNR and the individual coil configuration.
Laboratory-built arrays and arrays using heterogeneous elements, such as combined head and
spine arrays, would be the most likely to display variations in the noise standard deviation. As
the sensitivity of a surface coil array element is roughly proportional to the element's radius
(26), large inter-coil differences in signal would be most prevalent when the physical extent
of the array is much larger than the radius of the individual elements, such as in linearly aligned
arrays and arrays with a large number of elements.

We have also assumed that the data from each channel are individually phased and that the
analysis is performed only upon the “real” channel, which contains the entire signal while the
noise is evenly distributed between the “real” and “imaginary” channels. Instead, if the
magnitude images from each channel are analyzed, we distort the decay curve by introducing
a DC offset for each channel, especially at values with low SNR. This offset will coherently
add across the channels and produce a systematic underestimation of the decay rate constant
if it is not incorporated into the data model. This would produce an effect analogous to the SOS
data in Fig. 4. While proper modeling of the Rician noise distribution and the resulting DC
offset can mitigate these effects (10,15,17-20), the increased model complexity and the
uncertainty in the sign of low SNR data will still decrease the precision of the parameter
estimates.

Implementing the joint analysis of the phased signals from each channel requires saving the
raw, uncombined data from the individual channel elements. Saving this data is not the default

Quirk et al. Page 12

J Magn Reson. Author manuscript; available in PMC 2010 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



behavior on many scanners and may not be possible with configurations where the individual
coil signals are combined electronically prior to detection. However, even when only
magnitude data are available, a joint analysis of the channels will still provide equal or superior
parameter estimates to the coil combination methods described above (data not shown).

Conclusions
When analyzing data acquired using a phased array coil, the joint analysis of phased images
provides the most robust parameter estimates. The accuracy and precision of these estimates
are as good as or better than can be obtained from the channel combination methods considered
here, without requiring reference scans or assumptions of constant noise power across channels.
Of the possible channel combination methods, weighted averaging using the signal amplitude
divided by the noise variance is an acceptable alternative provided that spatial profiles of the
signal amplitude and noise standard deviation are known or can be accurately estimated for
each channel.

The use of incorrect weighting factors decreases the effective SNR and can introduce a bias
into the parameter estimates, sometimes producing less accurate and precise results than would
be obtained from analyzing the single highest SNR channel alone. This effect is amplified at
low SNR, for increased number of low SNR channels, increased number of low SNR points
in the decay curve, and when noise power varies across channels. Sensitivity weighted images
and sum-of-squares both assume that the noise power is identical across channels, which may
not be valid for all cases. The sum-of-squares combination of all images, the default in many
systems, introduces a known bias into the parameter estimation and therefore should generally
be avoided.
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Figure 1.
The % uncertainty in estimation of the decay rate constant for one channel data as a function
of SNR. The open circles represent the median % uncertainty from fitting the simulated one
channel data and the lines show the theoretical % uncertainty predicted by Eq. [8].
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Figure 2.
The % uncertainty in estimation of the decay rate constant from two-channel data as a function
of SNR in the second channel (SNR1 = 25:1). Lines show the values predicted from theory and
data points show the median % uncertainty in the decay rate constant obtained from modeling
simulated data. Results are shown for the joint analysis, average analysis when the signal
amplitude varies between channels, average analysis when the noise power varies between
channels, and for analyzing the high SNR channel alone. The results for the sensitivity weighted
average would overlap the joint analysis when the amplitude is varied and overlap the average
analysis when the noise power is varied between channels. The optimally weighted data would
overlap the results from the joint analysis under all conditions. For clarity, these overlapping
results are omitted from the graph.
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Figure 3.
Theoretical uncertainties in estimation of a decay rate constant for different numbers of
channels, as a function of the relative SNR in channels other than the first. The uncertainties
are normalized to the uncertainty from analysis of the high SNR channel alone. (a) Joint channel
analysis. (b) Analysis of the un-weighted average when the amplitude varies between channels.
(c) Analysis of the un-weighted average when the noise power varies. As the channels become
identical, all combination methods converge to the expected sqrt(M) lower than the one channel
uncertainty, as expected. The results for a sensitivity weighted average would overlap the joint
analysis when the amplitude is varied and the average analysis when the noise power is varied.
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Figure 4.
The % bias in estimation of the decay rate constant as a function of SNR in the second channel
calculated as the median bias over all two-channel simulated datasets for the sum-of-squares
(SOS) and joint analyses. The results of the joint analysis are independent of whether the noise
or amplitude of the second channel is varying.
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