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Sources of blood glucose can be determined after oral inges-
tion of 2H2O followed by isolation of plasma glucose and mea-
surement of the relative 2H enrichments in select positions
within the glucose molecule. Typically, 2H enrichments are ob-
tained by mass spectrometry but 2H NMR offers an alternative.
Here it is demonstrated that the entire analysis may be auto-
mated by Bayesian analysis of a 2H free induction decay signal
of monoacetone glucose to obtain a direct readout of the rela-
tive contributions of glycogenolysis, glycerol, and phosphoenol
pyruvate to plasma glucose production. Furthermore, Markov
Chain Monte Carlo (MCMC) simulations of the posterior prob-
ability density provide uncertainties in all metabolic parameters
from a single patient, thereby allowing comparisons in glucose
metabolism from one individual to another. The combined
MCMC Bayesian methodology is operationally simple and re-
quires little intervention from the operator. Magn Reson Med
50:659–663, 2003. © 2003 Wiley-Liss, Inc.
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Plasma glucose may originate from gastrointestinal absorp-
tion, glycogenolysis, or gluconeogenesis, and it has long
been known that each contribution is highly sensitive to
nutritional state. More recently, it has been shown that
glucose metabolism may be abnormal among patients with
common disorders, including cancer (1–3), cirrhosis (4,5),
obesity (6), and diabetes (7,8). In general, however, glucose
metabolism in humans is not widely studied because the
methods to resolve sources of plasma glucose are time-
consuming or impractical in typical clinical situations.
Recently, the contributing sources to glucose production
have been quantified by determining the relative enrich-
ment of deuterium or tritium in specific carbon sites in
glucose by mass spectrometry (9,10) after carbon-by-car-

bon chemical degradation of a glucose derivative. Despite
the technical demands of this measurement, a diverse
range of patients have now been examined, including low
birthweight infants (11), children (12), lactating women
(13), and others (14).

Deuterium (2H) NMR may also be used to quantify 2H
enrichment in glucose (15,16). While 2H NMR is attractive
because all seven aliphatic deuterons in certain glucose de-
rivatives can be resolved in a single experiment, the sensi-
tivity is limited by the low levels of 2H used in the human
tracer experiments and the amount of glucose available in a
few mL of blood. Given limited sensitivity, an operator-in-
dependent spectral analysis would be desirable. More impor-
tantly, it would also be desirable to establish a method which
allowed a measure of the uncertainties in the metabolic pa-
rameters of interest from a single NMR measurement.

Numerous algorithms are available for fitting either the
free induction decay or the Fourier-transformed spectrum
to assure rapid, reproducible, and objective analyses.
Bayesian probability theory is ideally suited to this anal-
ysis because of the abundance of prior knowledge avail-
able in a single 2H NMR spectrum. Using this approach,
the metabolic parameter estimates (posterior probability
densities) can be based on both the prior information and
data and the standard deviation of the resulting posterior
probability densities directly indicate the uncertainty in
the metabolic parameters of interest (18). In this study, oral
2H2O (9,10) was coupled with 2H NMR, Bayesian infer-
ence, and Markov Chain Monte Carlo (MCMC) simulations
to directly estimate the contributions of glycogenolysis, glyc-
erol, and PEP to plasma glucose. This automated analysis of
the 2H FID is operator-independent and provides an estimate
of error in each metabolic parameter from a single FID.

THEORETICAL BACKGROUND

Deuterium may be introduced into body water by oral
administration of 2H2O. Plasma glucose then becomes en-
riched in 2H at select metabolic steps in gluconeogenesis
and glycogenolysis that involve exchange with cell water.
The level of 2H enrichment at H2, H5, and H6S depend on
whether glucose originates with glycogen, glycerol, or PEP
(Fig. 1) according to the following equations:

glycogenolysis contribution � 1-�H5/H2) [1]

glycerol contribution � �H5 � H6(s))/H2 [2]

Krebs cycle contribution (PEP) � H6(s)/H2. [3]
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Resonances associated with H1, H3, H4, and H6(r) are
labeled by other metabolic pathways, but these signals are
easily resolved from the pertinent resonances, and there-
fore do not interfere with the metabolic measurement. An
initial bolus of 2H2O followed by maintenance doses is
used to achieve a 0.3–0.5% body water enrichment.
Plasma glucose is then converted to 1,2-O-isopropylidene-
D-glucofuranose, hereafter referred to as monoacetone glu-
cose (MAG) for analysis by either mass spectrometry (with
further chemical processing) or directly by 2H NMR.

Equations 1–3 may be solved given the ratios, H5/H2
and H6(s)/H2. Quantification of these independent ratios
will be influenced by experimental variables such as sig-
nal-to-noise (S/N), linewidths, etc. Accurate fitting of H2,
H5, and H6(s) require fitting of all 10 deuterium reso-
nances in the spectrum (seven from MAG, one from HDO,
and two from solvent acetonitrile). Bayesian theory pro-
vides a formal mechanism for evaluating the probability
for each ratio, independent of all the parameters used in
modeling the NMR signal. Further, the model is con-
strained by the prior knowledge from Eqs. [1]–[3] that
H2 � H5 � H6(s).

The Bayesian formulation relates Eqs. [1]–[3] directly to
the spectrum and MCMC simulations (19) find a maximum
for the probability density that takes into account the noise
level for all three peaks simultaneously instead of a local
maximum for each individual resonance. At high S/N
levels the difference between conventional fitting and
Bayesian/MCMC would be negligible, but with decreasing
S/N the potential for erroneous metabolic results in-
creases. The Bayesian/MCMC method quantifies this error
in terms of an uncertainty in each metabolic parameter.

MATERIALS AND METHODS

The sample spectra illustrated in this article came from a
single volunteer who participated in a larger study group.
The protocol was reviewed and approved by the Institu-
tional Review Board. The subject fasted overnight (14 hr)
prior to the first dose of a 70/30 mixture of 2H2O/H2O.
Three doses were given over the period of an hour with a

total dose of 5 mg of 2H2O/kg body water where body water
was assumed to be 60% of body weight. The fast continued
for 42 hr, with maintenance doses of D2O being given
periodically. Blood (20 mL) was drawn at 14 and 42 hr,
centrifuged at 2500 rpm to separate plasma extracted with
perchloric acid, and converted to MAG (20). A 2H NMR
spectrum was collected at 14.1 T (92 MHz for 2H) on a
Varian INOVA console (Varian Instruments, Palo Alto,
CA) with a 3 mm direct 2H detect probe (Nalorac, Mar-
tinez, CA). 1H Waltz-16 decoupling was used during ac-
quisition to reduce linewidths in the 2H spectrum. Data
were collected over a spectral width of 1 kHz using single
�/2 pulses with no delay between pulses. Given that the
acquisition time was 1 sec and the longest T1 of any
deuteron in monoacetone glucose is less than 0.25 sec, no
postacquisition correction of peak areas was necessary.

Bayesian Analysis and Markov Chain Monte Carlo
Simulations

In order to infer the probabilities for the relative contribu-
tions of glycogenolysis, glycerol, and TCA cycle to blood
glucose, it is necessary to relate the spectroscopic data to
the metabolic model. The entire FID was modeled (18) and
the sum rule of probability theory was used to reformulate
the model in terms of ratios of resonance amplitudes nec-
essary to solve Eqs. 1–3. In total, there are 39 different
parameters in the model: an amplitude, frequency, and
decay rate for each resonance (10 resonances in the spec-
trum, or 30 parameters) and an allowance for a bad first
point, phase, and DC offsets in the real and imaginary
channels for the FID and the metabolic model.

These 39 parameters are included in the expression for
the joint posterior probability density. To estimate any
single parameter, the other 38 dimensions must be inte-
grated across to account for their influence on the proba-
bility of the chosen parameter (18). The only way to carry
out integrals of such high dimensionality in a reasonable
amount of time is through Monte Carlo integration (19).
For this application we used 50 independent Markov
chains (19) from which 50 independent samples were
drawn from each chain for a total of 2500 different samples
from the joint posterior probability density. After the sam-
ples were generated, sums were performed for each vari-
able over the 2500 samples, producing estimates of the
mean and standard deviation for each parameter.

To verify the accuracy of the analysis method, a variety
of different datasets were simulated by summing a series of
exponentially decaying sinusoids. For these datasets ran-
dom noise with varying amplitude was added to the sim-
ulated free induction decays to decrease the S/N ratio and
the simulated data was processed in the same manner as
the data acquired from the spectrometer.

RESULTS AND DISCUSSION

Typical 2H NMR spectra of monoacetone glucose derived
from glucose present in 20 mL of whole blood are shown
in Fig. 2a,c. The spectrum in Fig. 2a reflects plasma glu-
cose after a 14-hr fast while the spectrum in Fig. 2c reflects
glucose after a 42-hr fast. Simple visual inspection of the
transformed spectra provides qualitative information

FIG. 1. Substitution of 2H for 1H in plasma glucose occurs due to
different metabolic processes at each carbon. The labeling at H2 is
equal to the level of enrichment in the body water. The areas of H5
and H6(s) vs. H2 measure the relative contributions of glycerol and
PEP to gluconeogenesis.
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about the sources of plasma glucose at each time point. In
Fig. 2a the H5/H2 ratio is low, indicating a significant
contribution from glycogen. Also, the difference between
H6S and H5 is small, indicating a very low contribution of
glycerol to gluconeogenesis. At 42 hr (Fig. 2c), the H5/H2
ratio is �1, showing that glycogen reserves were essen-
tially depleted after this prolonged fast and H6S/H2 also
approaches 1, indicating that most of the plasma glucose
was generated from the level of the TCA cycle.

The results of the Bayesian/MCMC analysis of the free
induction decays are shown as histograms in Fig. 2b,d. In
contrast to focusing on the description of the spectrum
(S/N, lineshape, etc.), the histograms immediately report
the metabolic parameters plus give an estimate of the error

in each metabolic parameter. For the 14-hr spectrum, the
contributions to plasma glucose from glycogenolysis, glu-
coneogenesis from glycerol, and gluconeogenesis from
PEP were 0.34 � 0.06, 0.07 � 0.05, and 0.58 � 0.06,
respectively. The sample collected at 42 hr reports contri-
butions due to glycogenolysis, gluconeogenesis from glyc-
erol, and gluconeogenesis from PEP were 0.09 � 0.05,
0.11 � 0.06, and 0.80 � 0.06, respectively.

To assess the accuracy of the method, free induction
decays composed of pregenerated sets of exponentially
decaying sinusoids with four different levels of noise were
analyzed. Figure 3 shows how one metabolic parameter,
the TCA cycle contribution, is affected by increased noise
in the spectrum. The vertical dotted line was obtained by
performing the Bayesian analysis on data without noise.
This of course reproduced the true TCA cycle contribution
exactly; hence, the histogram has zero width. Increasing
noise has two effects; it widens the histogram linearly
(inset) and results, in the example shown, in a shift in the
maximum of the probability density toward a slightly
higher TCA cycle contribution. This is a systematic error
caused by using the same set of noise with increasing
amplitude. Here, the added noise either increased the in-
tensity of H6S or decreased the intensity of H2 with a net
result of a slight overestimate of the TCA cycle contribu-
tion from its true value. Although introduction of noise to
a level similar to that typically seen experimentally (Fig. 2)
did result in a slight overestimate of the TCA cycle con-
tribution, the value determined was still within one stan-
dard deviation of the true value of this metabolic param-
eter.

A second way to assess the impact of noise upon meta-
bolic estimates is to use the Bayesian model to fit an
experimental FID, then use variations in the metabolic
parameters to generate a new series of simulated free in-
duction decays that have no noise and examine the resid-
uals obtained by subtracting them from the data. Figure 4
shows the output of the MCMC analysis for the 42-hr
sample. Using the metabolic parameters obtained from the
maximum in each posterior probability density to synthe-
size a new spectrum results in a very small residual when

FIG. 2. Spectra and Bayesian/MCMC output for two NMR samples
at 14 hr and 40 hr of fasting. Bold lettering indicates resonances
used in calculation of metabolic values. The label for the y-axis is
read, “The probability of the hypothesis given the data and the prior
information.” a: Spectrum for 14 hr of fast. b: The output of the
program shows that the contribution from glycogen remains high
(�34%). Glycogen is marked by triangles, TCA by open circles, and
glycerol contribution by a solid line. c: Spectrum for 40 hr of fast. d:
At 40 hr of fasting the contribution of glycogen has decreased while
that of gluconeogenesis has increased significantly.

FIG. 3. Histograms for TCA cycle contribution as a function of
decreasing S/N for the synthesized data. As the S/N decreases the
histograms widen. The inset graphs the standard deviation of the
estimate of the TCA contribution as a function of the applied noise
power.
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the two frequency domain spectra are subtracted (denoted
in Fig. 4 by the arrows). This would be considered an
excellent fit by any algorithm that uses frequency domain
data. Interestingly, when a new set of metabolic parame-
ters were chosen that fell closer to the tails of the proba-
bility distribution of the original Bayesian fit (the values
denoted by the asterisk were 0.03, 0.06, and 0.91 for gly-
cogenolysis, gluconeogenesis from glycerol, and glucone-
ogenesis from PEP, respectively), the residual seen in the

frequency domain difference spectrum was not noticeably
different to the eye from the fit drawn at the maximum of
the probability distribution. This demonstrates that the
time domain Bayesian analysis is more precise in evaluat-
ing these metabolic parameters than an operator-guided fit
of frequency domain data. The set of values chosen at the
tail of the probability distributions are nonphysiological
(the values for glycogenolysis and glycerol contributions
are too low, even for a 42-hr fast). Most importantly, it
reveals that at this S/N level, an objective formulation of
the error is essential. Spectra can be simulated which
appear to account for the NMR data equally well, as evi-
denced by the residuals in Fig. 4, but do not correspond to
the most probable estimate of the metabolic parameters.
Our overall experience in fitting both time and frequency
domain 2H NMR spectra suggests that the Bayesian/MCMC
analysis gives better estimates of metabolic parameters for
spectra with S/N below 20. Above S/N �20, both methods
give similar results. Given that Bayesian analyses could be
implemented to run without operator guidance in parallel
with NMR data collection, this could become important
for rapid throughput metabolic measurements.

If 2H enrichment can be measured in the aliphatic hy-
drogens of plasma glucose, then it is a simple matter to
calculate metabolic origins of glucose. The fact that each
aliphatic deuteron can be detected directly by 2H NMR in
a single spectrum may prove to be an overwhelming ad-
vantage of NMR compared to mass spectrometry. Further-
more, NMR permits simultaneous examination of complex
metabolic networks by tracers containing 13C in addition
to 2H in a single experiment (15). Other methods for fitting
the 2H NMR data in either the time or frequency domain
would locate the maximum of the probability density and
hence produce a fit with an equally good residual, but the
proposed method offers a systematic formulation of the
uncertainty in the parameter estimates from a single spec-
trum. Since the prevalence of metabolic disorders such as
obesity and type 2 diabetes is on the rise in our population,
it is likely there will be increased demand for reliable and
simple methods to evaluate glucose production in humans
in the near future.
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