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Our title is the title of a talk giver in Cambridge on Feb.
3, 1984y by Professor G. A. Barnard. For him 1t was & question
to he taken =seriocusly, and answered sericusly. Buet for us it is
only a rhetorical questions for while we ses many things in
Payesian methods that are still incomplete and in need of
further technical development, we are unable Yo see anything
hasically wrong with them.

Howevers BRarnard®s argument proved to be valuable, because
it framed cur differences in such a clear and schare way. Thirty
ypars ago Jimmie Savage remarbked of statistics that "there has
seldom heen such complete disagreement and brealidown of
communication =ince the Tower of Babel®, Pondering Rarnard’®s=
remarks we were able to see where our communication has failed,
more clearly than before.

For decades PBayesians have been accused of "supposing that
an unknown parameter iz a random variable'"id and we have denied,
hundreds of times and with increasing vehemence, that we are
malking any such assumption. He have been unable to comprehend
why our deniale have no effecty and that charge continues to be
made .,

Sometimes, in our perplexity, 1t has zeemed to us that
there are two fundamentally different kinds of mentality in
statistics} those who see the point of Bayesian infesrence at
onces and need ne edplanationd and those who never see it,
however much explanation is given. Put Parnard’s remarks
pravided a clue to what has been causing this genuine Tower of
Pabel situation.

Parnard defined the term "statistics" as follows: (A) It is
not concerned with decision making; and it i= not concerned
with scientific inference in general. (B} Rather, statistics is
"that part of inference where experimentse sare repeatahley, their
recsulte only partiallu so¥. () Any models we use must be
verifiahle - or at least criticizable - and the probabilities
we gyse must be freauencies,

He then complained that Rayesian methods of parameter
gstimation, which sxgress the result as a posterior
distribution, are 11llogicals for how couwld the distribution of
a rarameter possibly bhecome known from data which were taken
with only one value of the parameter actually present?
Azcignment of prior probabilities was dismissed as an
"uncriticizable assumpti bout -hance distribution”

uncriticizable assumetion about a chance distribution”.
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THE BAYESIAN REACTION

Let us note the instinctive first reaction that a Bayesian
has to Rarnard’s arguments., His definition of "Statistics®
seems to cut it off from most of the problems where we had been
led to believe that "Statistics" was the appropriate tool. For
it is simply a fact of life that in most of the real problems
faced by scientists, engineers, economists, and administrators?

(A} we are concerned with decision making, and with
inference in general.

{R) There iz no repeatable experiment involved; the reason
why inference is needed is not "random errors" but
incomplete information.

() Officially, RPayesians do not know what it means to
"verify" a model or "coriticize'" a prior probability,
hecause our modelse and prior probabilities are only
asummaries of what we know about the phenomenon being
obhserved, and about the possible values of the parameters,
The evidence in support of them has already been taken into
account when we propose them.

Unofficially, of course, we may wish like anubody else to make
a "trial run’” experiment with some model or prior that does not
represent actual knowledges, but only a8 whimsy, to see what
happens. This mighty for example, help us to decide whether it
would be worth the effort to get & certain kind of prior
information.,

Parnard’s subsequent complaint zppears Lo us as an example
of a semantic trap caused by habitual use of the phrace
"distribution of the parameter” wvhen one should have said
"dietribution of the probability”"., OQur communication problems
arise in large part from the difficulty that orthodox
terminology i=2 not adapted to expressing Payesian i1deas (in
this respect it reminds one of the Orwellian NEWSFEAK, =
language within whose vocabulary and grammar 1t was not
rossihle to express dissenting views),

In Payezian inference, both the prior and posterior
distributions reprezenty not any measurable property of the
parameter, but onlu ouwr own state of knowledge about 1t. The
width of the distribution indicates not the range of
variability of the tivus values of the parameter, but rather the
range of values that sre consistent with {i.e. not ruled out
by) our prior information and data. Honesty therefore compels
usm o admit them as gossibhle valuess,
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What is "distributed” is not the parameter, but the
probability. A terminology which aluays makes this clear is
much needed. The phrasenlogy "probability distribution function
{pdf) for a parameter® is a step in the right direction, but
perhaps we might find something more brief and explicit.

Parnard’s argument is then absolutely mind-boggling to a
Payesiani for to try to "verifu'" a distribution which expresses
only a state of knowledue about a parameter by performing
random experiments on the parameter, is the logical equivalent
of truing to verify & boy’'s love for his dog by performing
experiments on the dog. But just to have our differences appear
in such acute form suggests a plausible —— and at lesst to the
writer, new and =startling -— hupotheszis about where our
compunication has failed.

I« it possible thats for all these years, those uwho have
seemed immune to all Bayesian explanation have just been
misunderstanding our purpcose? All this time, we had thought it
clear from our subject-matter context that we are irying to
pstimate the value that the parameter had when the data were
taken. Put differently, we are trying to draw inferences about
what actually did bappen; not about what might have happened
but did not.

Nothiing could be further from our purpose than to make
statements about how our parameter might he "distributed! in
other situations that we are not reasoning about. Indeed. our
posterior distribution for a parameter is not necessarily a
predictive distribution for values that it might have in future
experiments; this depends on further details of our prior
knowledgey, that were not relevant in the problem we had
addressed.

Put now it appears that our critics may have been trying to
interpret our work in a different way, imposed on them by their
habits of terminalogy, as an attempt to solve a very different
problem. If =0y owr past communication difficulties would
bhecome undevstandable! the problem thew impute to us has —— as
they caorrectly see - no solution from the information at hand.
The fact that we nevertheless get s solution then seems
miraculous to them,. and we are accused of trying to get
something for nothing.

"Statistics" as detined by Parnsrd and "Scientific
Inference” as defined by Jeffreys are concerned with different
problemss and sy far from having reason o argue the merits of
our different methods, we have no reason to compare them at
all. e can restore seace in both fields zimply by going our
separate Waus.

Yet it is clear that nelther Gecgrge Barnard nor 1 wants to
do thisy for we both see that, in spite of the above, our
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different problems are closely related mathematically. Rising
above past criticisms —— which now appear to have been only
misunderstandings of our purpose -- Bayesians are in a position
to help orthodox statistics in some of i1ts most serious current
difficulties. For the Bayesian procedure is flexible enough to
apply to many different problems, including both those of
Barnard and Jeffreyus.

LET*S NOT CONFUSE TWO DIFFERENT FPROBLEMS

In the following it i= essential that we understand clearly
what the two problems are and which problem we are talking
about.

In the Jeffreys scenario we are estimating, from our prior
information and data, the unknown constant wvalue that the
parameter had when the data were taken.

In Barnard’=s we are deducing, from prior knowledge of the
frequency dictribution of the parameter over =some large class C
of repetitions of the whole experiments the freauency
distribution that it has in the subclass C(D}) of cases that
yield the =same data D, The problems are so different that one
would expect them to be solved by different procedures.

But Fauesian inference need not adhere constantly to the
Jeffreys problem, for nothing prohibits us from estimating a
frequency distribution instead of a fixed value, if that
happenz to be the thing of interest. But instead of =auing that
the probability is the frequency, we would calculate the
probability that the frequency lies in various intervals,
enabling us to make statements about the accuracy of the
ectimate.

Likewise, orthodoy statisticse could in principle switch
back and forth between the problems of deducing conditional
frequency distributions of a parameter, and inferring fixed
values of a parameter, depending on whether the parameter is or
is not considered "random”. Howevers we are not sure that this
switching has ever occurred, for we know of no real problem in
which angyone has actually used BRayecs® theorem for the purpose
that Barnard supposed.

In the case where the parameter is considered to be a fined
constant, application of Baues’® theorem for Rarnard’s purpose

would indesd be illosicali or rather idley for it presupposes
that we already Lpoo. in the singuwlar prior, the freqguency
distribution of ths careameter in every suboclass C(DY). and so0
there ie pothing oo - to be learned from the data.

But we never know that singular frequency distribution in

advance {if we did know 1ty we would not be considering the
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problem). Orthodox statistics then reverts necessarily to
inference concerning a fixed value of the parameter rather than
a distribution of values. Then the orthodoxian and Bayesian are
trying to solve the zame prablem if neither has any prior
information about the parameteri and it makes sencse to argue
our different philosophies and compare our different methods.

WHAT HAPPENS IF WE CONSIDER THE SAME PROBLEM?

Eince orthodoxy =ees no meaning in & probability which is
not also a freauency, it i= obliged *o seek other tools than
probability theory. Lacking guiding theoretical principles,
Neymannian orthodoxy is reduced to inventing ad hoc procedures
like confidence intervals or significance tests based on some
statistic chosen by intuition.

Fisherian orthodoxy is in & better position because it
recognizes that such inference is valid only when we are using
sufficient statistice or conditioning on ancillary statistics.
Thus it avoids the wild anomalies that can ari=se in Neymannian
inferences some of which were noted by Earnard.

For the Bauesian, who doez =ee meaning in & probability
that is not a frequencdsy all the needed theoretical principles
are contained in the product and sum rules of probability
theory. He wviews themy not merely as rules for calculating
frequencies {which they are, but trivialluli but also rules for
conducting inference == a nontrivial property requiring
mathematical demonstration. Eut that demonstration is a long
since accomplished fact, as noted below, and the result ist
thoze rules tell us to use Bayes' theorem in the manner of
Laplace and Jeffreus., So how do the pragmatic resulte compare?

A1 early indication of things to come was the demonstration
by Jeffreys {1939) that the orthodox t—-test follows exactly
from a few lines of Pavesian analysis, using the Jeffreys
uninformative priorse for the location and scale parameters. The
same is easily shown to be true for the F=test and the orthodox
test for the parameter of a Poisson distribution,

Lindley {(1958) then proved that if any problem is
equivalent {(to within a change of variables}) fto a
location/scale parameter problem and has sufficient statistics
=0 that fiducial inference is poassible, then that fiducial
distribution is identical with a Bayesian posterior
distribution.

Unfortunately, cration/scale parameter problems do not in
general have suffic.ent statisticsy but they do have a complete
st of ancillary statizstics. The writer has shown {Jaunecs,
1974) that the "be=t" confidence interval for any location or

scale parameter {1. =.. *the shortest one that meets Fisher’s
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requirement of conditioning on all ancillary statistics) is
identical with the Rayesian posterior probability interval at
the same level, based on the Jeffreus uninformative priors. The
proof does not even require independent sampling.

1t appears to the writer that all of the procedures which
the "orthodox"” statistician himself considers fully
satigfactory,y, follow trivially from the Bauesian approach with
noninformative priors. If there are esxceptions to this
conjecturey it would be interesting to learn about them and
stucdy them.

Put many problems encounter technical difficulties
{nuisance parameters, nonexistence of sufficient or ancillary
statistics, flat—topped likelihood function, inability to use
prior information) which have not been overcome by any
satisfactory orthodoyr procedure. We find, when we apply
Payesian methods to such problems=, that the difficulties are
overcome effortlessly, yielding substantial improvementz over
arthodoy resultes {(Jaynes, 19758).

Finally, Bayesian methods with the adjunct of Maximum
Entropy -—=- which can be thought of either as a factor in the
prior or as a utility function —— apply also to a mass of new
problems that cannot be formulated at all in orthodox termss
and computers are now busy grinding out the useful solutions,
They are performing verd nontrivial data analysis in such
diver=ze fields ae spectrum estimation, medical instrumentation,
underuwater acoustice, radio astronomy, gecophdysicss optical
image reconstruction, physical chemistryy corystallograrphyy and
what will probably become the largest area of application,
biclogical macromolecular structure determination.

Here in Cambridge, computers are now routinely locating
constrained entrapy maxvima in spaces of over a million
dimensions. The numerical results are =0 impressive that the
methods are moving steadily into new areas, and major efforts
are underway in many places, to develop still more powerful
ProgyY ams.,

In view of this, we are not surprised to find that
criticiems of RPayesian and/or Maximum Entropy methods deplore
only ouwr philoscophdsy and stop short of examining our actual
numerical results in real problems {which seems & pitys hecause
we are proud of those results and think they would be easy to
defend, althouah we could hardly compare them to nonexizstent
arthodoy results),

Put our philosophy s very easy to defend alsa as soon as
One recoanlzes our purpose as edsplained abovey for it ois not oan
cpiniony but a theorem {Cos, 1944), that any et of rules for
inference, in uwhich we represent degrees of plausibility by
real numbers, is necessarily either equivalent to the Laplsce —
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Jeffreys rules, or inconsistent (in the sense that one could
find two methods of calculationy, each permitted by the rules,
which yield different results).

In the simpler problems of this type, orthodox intuition
was powerful enough to invent ad hockeries that proved to be
equivalent to Bayesian methods with uninformative priors.,

In technically more complicated problems where we obtain
different rezultz, orthodoxy does not usually formulate its
rules completely enough,y or apply them far enough, for the
afarementioned kind of inconsistency to appear. Put it is
always lurking Jjust beneath the surface, and sometimes does
come into view,. The statistical literature —-- not all PRayesian
—-— ontains many examples of the anomalous resulte that
orthodox methods can give in particular cases,

For example, confidence intervals not based on sufficient
statistics and not conditioned on ancillary statistics lead to
different conclusions from different choices of the statistic;
even to grotesquely impossible conclusionss because they ignore
cogent information in the sampley, that Fayesian methods take
into account automatically.

On the other hand, whenever someone has claimed to exhihbit
an anomaly in Bayesian results, it has turned out that there
was an error in the calculation or the Rayesian method was
misapplied. Typicallyy the user has extra informationy highly
relevant for the inference, that he failed to take into account
in the calculation. Yennts polemical attack on Laplace’s Rule
af Successiony answered by Fisher (1938), is perhaps the
classic evample.

For Jeffreys® problem of inferring a fixed value, theny it
seems to us & long zince demonstrated fact - on both the
theoretical and pragmatic level —— that the orthodox
statistician has a3 great deal to gain in useful recsulte {(and a=
far as we can see, nothing to lose but his idealogical chains)
by Joining the Pauyesian camp and finally taking advantage of
the pouwerful tool that Harold Jeffreys created and offered to
him 45 ygars ago. Failing to do thissy he faces rapid
ahzglescence as the new applications of Jeffreus’® principles
pase far heyond his domeain.

MoW LET" 3 CONSIDER BARNARD™S FROBLEM

Pul suppoze wes want to infer a freaquency distribution
for & parameter acoording to Parnard’s scenaricd how do our
methods compare” Phe orthodoxrian will then allow the use of
Payes® theorem in pvancipley becsuse he can interpret every
probability in 1t &= a frequency. The prior probability can
stand only for & freguency in the large class €, Put this is
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almost always unknown in the real problemsy and soc he can almost
never use Bayes® theorem in practice. We do not know of any
case where Barnard’s scenario has actually been enacted.

The orthodoxian also has a difficulty of principle. For,
even if we did know the frequency distribution of the parameter
on the large class €, we might not want to wuse it as a prior.
Suppose we also happened to know something more, that did not
involve frequencies, pertaining to the present experiment (for
examples that because of special circumstances extreme values
cannot occur). It appears to us that neither the orthodoxian’s
idealogy nor his procedures would permit him to use that
additional information to improve his estimates. Indeed, we
suspect that he would not wish to consider the problem at all,
because in this particular experiment the parameter would be,
in his view, "not randomly =selected".

The difficulty applies equally well to the sampling
distribution. Even if we knew the frequency distribution of
samples for all values of the parametery we might not want to
use it as a sampling distribution. We might have knowledge of
special circumstances that affect the possible values of data
that can be observed in the precsent experiment (for example,
that because of rotation of our spacecraft every third datum is
subject to additional error not in the others, but we do not
know which ones are thus affected). Surelys common =ense will
tell us that it would be wong to analyze the problem as 1f we
did not know this; yet what orthodox principles would
determine, or even Jjustify using, & procedure that takes this
into account? To do =0 would be to admity with Jeffreys, that
in inference a probability =tands for more than Just a
frequency.

We do not contend that such difficulties will arise very
often, but only want to point out that attempts to uphold
freauency definitions of probability can lead to difficulties
of principle whenever we have relevant information that doss
nat consist of frequencies. Payesian methods can take such
information into account easilyi such cases make the
interesting homework problems for our students.,

In our view, orthodox principles could deal with Barnard’'s
scenario satisfactorily only when we have perfect knowledae of
frequenciesys and no other relevant information {(i.e.s Just the
case where Payesian probabilities are sgual to freguencies).
That i=s, when we have the freguency information that the
orthodoxian must heave but the Pauesian can get along without,

bBut lack the extra information that the Bayesian can use but
the orthodoxian cannoat, S50 againy as in the case of confidence
intervalsy the orthodor procedure will be satisfactory only
when our information iz such that the orthodox resulte agree

with the Bayesian ones,
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In contrast, the Bayesian is prepared to consider this
problem in far greater generality and depth, because he can
take into account any prior information that can be expressed
by a prior distributiony and for this he is prepared to go into
deeper and deeper hypothesis spaces. If he lacks knowledge of
the frequency distribution of the parameter 8 in class Cy he
can still a=ssign,s perhaps by maximum entropy, & prior that
represents whatever partial information he has. If he has
additional information about 8 beyond freaquencies, he can take
this into account equally well.

Most important of ally the Bauesian has a technical
flexibility in that he can solve BRBarnard’s problems not on the
parameter space P consisting of the possible values of 5, but
on the extension space Bin) = B X B X ... X B comprising the
Jointly possible values [B1 ... Bnl of & in each of anyg
number of repetitione of the experiment. On this space it i=s
possible to express information about the variability and
correlations of 8 in different experiments —-— out to and
including the limit of perfect correlation where he knows that
& is an unknown constant, and the results opn Bin) reduce to
those of the previous elementary Bayesian analysis on B.

By this means, we can transcend the crudity of supposing
that the probability i= the frequency, and develop the
probability functional giving the relative probabilities of
different frequency distributionsy in the light of whatever
information we have. In image reconstructiony phusical
chemistry,y, and geophysice we are now beginning to attack real
problems where we have important prior information that can be
espreszed only on such an extension space.

Failure to appreciate the work of Jeffreys hazs been very
costly to the field of statistics for decades —— nearly fatal
as far as the ability to participate in new developments is
concerned. The nonPaye=ian area i= being left far behindy as
the new applications are taken over instead by younger
scientistsy, who would never dream of consulting a =tatistician
for advice, because they understand and use Bauesian analycsics
ase naturally as thew use Fourier analusis.

O0Ff coursey the field is open-endedy and many more technical
advances will be needaed in the future as prablems become more
sophisticated. Yet the Bayesian remedy for the elementary
shortcomings of orthodoxy is already highly developedy and is
available to anygons.




